Reprint

Design and Implementation of a MAC Controller for the
IEEE802.11 Wireless LAN

M. Iliopoulos, A. Maniatopoulos and T. Antonakopoulos

International Journal of Electronics

VoL. 88 No. 3, 2001, pp. 271-285

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each author's
copyright. In most cases, these works may not be reposted or mass reproduced without the explicit
permission of the copyright holder.

o & Fp
o)
2.
6

~
%)

INT. J. ELECTRONICS, 2001, vOL. 88, NO. 3, 271-285

. SAYy

4 »
Cunges V¥

Design and implementation of a MAC controller for the IEEE802.11
wireless LAN

MARIOS ILIOPOULOS?t, ALEX MANIATOPOULOS{ and
THEODORE ANTONAKOPOULOS*

IEEE 802.11 wireless LANs have a tremendous market potential, as they support
high data rates, work in the world-wide licence free 2.4 GHz ISM band and have
high performance in terms of range and power consumption. Hence, the
development of a communication processor that supports the IEEE 802.11 MAC
functions has a significant potential, making very important the concept of having
an ASIC ‘right from the first time’, in order to minimize development cost and to
meet short time-to-market requirements. This paper presents the methodology of
developing such a component with emphasis on the rapid prototyping approach.
The chip architecture, which is based on an ARM processor core, is described in
detail, focusing on the implementation of the protocol functions using custom
hardware modules. Finally, the paper presents experimental results on the ASIC
implementation.

1. Introduction

Wireless local area networks (LANs) are becoming very popular owing to their
inherent flexibility and ease of use. The recently approved IEEE 802.11 Standard
(IEEE 1997) for Wireless LANs (WLANSs) is a very significant milestone in the
evolution of wireless networking technology. The standard is limited in scope to
the physical (PHY) and medium access control (MAC) layers of the OSI model
and allows vendors to develop products as interoperable as today’s wired LAN
products, based on accepted industry standards. The existence of the IEEE 802.11
standard will expand the use of wireless networks in a variety of commercial and
industrial applications. Target environments include indoor areas such as hospitals,
residences, industries, offices and outdoor areas such as campuses, building com-
plexes, parking lots etc.

The standard describes a PHY-independent MAC layer which may use optical or
radio transmission. An optical-based PHY uses infrared light in the range of 850 nm
to 950 nm and supports 1 Mbps and 2 Mbps, while the two radio PHYs use either
frequency hopping (FH) spread spectrum or direct sequence (DS) spread spectrum
types of radio communications. FH systems use conventional narrow-band data
transmission techniques, changing their frequency periodically. The nodes hop at
fixed time intervals around a spread band using different centre frequencies in a
predetermined sequence. In 802.11, the FH PHY defines both 1 and 2 Mbps data
rates, using 2 and 4 symbol GFSK. DS systems artificially broaden the bandwidth

Received 22 December 1999. Accepted 9 October 2000.

*Corresponding author. e-mail: antonako@ee.upatras.gr

t ATMEL — Hellas SA, Patras Science Park, Stadiou Street, Platani 26500, Patras, Greece.

1 University of Patras, Department of Electrical Engineering and Computers Technology,
26500 Rio—Patras, Greece.

International Journal of Electronics 1ISSN 0020-7217 print/ISSN 1362-3060 online © 2001 Taylor & Francis Ltd
http://www.tandf.co.uk/journals
DOI: 10.1080/00207210010013210

272 M. Iliopoulos et al.

needed to transmit a signal by modulating the data stream with a spreading code.
The receiver can detect error-free data even if noise exists in portions of the trans-
mission band. The DS PHY version of 802.11 defines both 1 and 2 Mbps data rates,
using differential binary phase shift keying (DBPSK) and differential quadrature
phase shift keying (DQPSK).

The MAC layer of the IEEE 802.11 standard provides the services of MSDU
delivery, authentication and privacy. The IEEE 802.11 MAC protocol uses the
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) algorithm
for delivering MAC service data units (IEEE 1997). Within a wireless system, the
medium is not bounded as with a wired system. In order to control the access to the
network, stations must initially establish their identity, so a type of authentication
procedure is also used. Another important issue in wireless networks is privacy,
which in IEEE 802.11 WLANs is implemented by using the Wired Equivalent
Privacy (WEP) algorithm.

The objective of the work presented in this paper is the implementation of a
communication processor capable of supporting the IEEE 802.11 MAC functions.
The processor should incorporate all the necessary logic for interfacing to wireless
PHYs (DS or FH), memory devices and host processors, allowing system designers
to minimize the system components. Moreover, such a chip, when used in portable
devices, should be targeted for low power consumption, and support of high pro-
cessor speeds, in order to be able to incorporate future updates of the IEEE 802.11
protocol.

An example of a target system based on this processor (MAC chip) and direct
sequence spread spectrum (DSSS) radio devices is illustrated in figure 1. The system
consists of a radio chipset, the MAC processor and the memory devices. The DS
configuration of the radio chipset consists of a baseband processor, a frequency
synthesizer, a modem, an RF/IF converter, a power amplifier and a 2.4 GHz trans-

DSSS Radio |

Frequency
Synthesiser

Baseband
Processor

RF/F
Converter

Contol |

MAC Processor

Host Driver
4/1 YIOWOd

Figure 1. The system architecture.

MAC controller for wireless LAN 273

mit/receive switch. In the FH configuration the modem and the RF/IF converter are
omitted. The MAC processor implements the MAC functions and offers a glueless
interface to the radio chipset, the memory devices and the PC Memory Card
International Association (PCMCIA). The memory devices are used for microcode
storage and temporal buffering of data packets and firmware variables.

Section 2 of this paper describes the methodology of developing such a compo-
nent in terms of hardware and firmware, emphasizing on the rapid prototyping
approach. The chip architecture is described in detail in § 3, focusing on the imple-
mentation of the protocol functions using custom hardware modules. Finally, § 4
presents some experimental results on the application-specific integrated circuit
(ASIC) implementation.

2. System development methodology

As stated previously the main objective of this work was the implementation of a
MAC processor that supports the IEEE 802.11 functions. Moreover, in order to
have a viable wireless product, an equally important objective was a ‘right from the
first time’ ASIC that could meet time-to-market requirements with minimum devel-
opment cost. Meeting the above targets using the traditional method of modelling
the complete system with hardware description language was not feasible, since a
distributed system incorporating the MAC processor should also contain RF com-
ponents, which cannot be efficiently modelled and simulated with the overall system.
The access protocol complexity does not permit the evaluation of the developed
microcode using only simulated hardware models and requires the deployment of
a small scale network. The traditional method of developing the microcode in par-
allel to the hardware, and of starting the microcode testing after having the first
version of the chip, increases the total development time and may result in multiple
silicon runs.

The safer method of producing error-free hardware from the first run is to follow
a system prototyping method using reprogrammable logic around the processor’s
core. This method allows the installation of an experimental network from the very
beginning of the project; thus concurrent development of hardware and microcode
could be performed, architectural decisions could be evaluated using experimental
results and protocol interoperability tests could be performed even before the system
is implemented in silicon.

The above prototyping method was used in this development and gave us the
opportunity to emulate the ASIC’s behaviour and to address possible architectural
bottlenecks, even before starting the ASIC implementation. Based on this approach,
the chip development was completed in three phases, the rapid prototyping phase,
the ASIC development phase and the system testing phase.

2.1. Rapid prototyping

The rapid prototyping phase is divided into three subphases: system specification,
emulation platform development and architecture verification, as shown in figure 2.
The development of a MAC processor requires the cooperation of a hardware team
that defines and implements the chip architecture and of a firmware team which
develops the microcode that implements the MAC functions based on the specific
hardware architecture.

274 M. Iliopoulos et al.

System
Specification
T e
i Firmware
! development
i Emulator
f Emulator Platform Development

Analyzer feedback
"""""""""" Debugging] | Architecture Verification Tt
Noade) Architecture Verification *

h
| i
3 i
| 1
| 16-bit External Interface |
5 Network Enhanced PAI I Testing I !
: Analyzer board WEP Requirements :
“Analyzerfeedback | Reconfiguraton
i Emulator Platform Reconfiguration
i Emulator
i
| Enhanced
; Firmware
e T s
Verilog —%
) ARM ready Hardware ‘ ASIC D i
evelopment
Behavioural code Test Vectors | P
Modeils >
a) b)

Figure 2. The rapid prototyping approach.

During system specification, the basic architectural decisions, such as custom
hardware solution versus processor based solution, processor core selection etc.,
were considered. The specification was given to the hardware development team
which was responsible for producing a prototype system that should implement
the specified architecture but also be flexible (using field programmable gate arrays
(FPGAs) as basic building blocks), in order to incorporate future enhancements.
Using these system specifications, the firmware team worked in parallel with the
hardware team to produce microcode executable in the prototyped system. The
prototype (firmware/software) was given to the hardware team that tested and
debugged the hardware modules and also addressed some architectural bottlenecks.
The experience gained during system evaluation was used by the hardware and
firmware teams to reconfigure the hardware platform and to produce an updated
version of the system, on which the architecture of the final ASIC was based. The
emulator board was used as the platform for the development of the microcode,
while the ASIC was in design and fabrication, giving the opportunity to have an
error-free code when the ASIC came out of the fabrication.

The use of the above procedure had some very important advantages as opposed
to traditional ASIC targeted design. The hardware modules were tested extensively
using real-time conditions and the basic hardware functions were debugged, redu-
cing the risk of ASIC redesign. The MAC functions, implemented in firmware, were
tested in the emulation hardware, and time-critical functions were addressed and
transferred into hardware before the ASIC development phase was started. All teams

MAC controller for wireless LAN 275

(hardware, firmware) worked in parallel, thus minimizing the total development time
significantly. More details on the rapid prototyping approach are given below.

2.1.1. System specification. System specification was the first step to the system de-
velopment. It is considered as the most important step since many architectural
parameters are defined at this stage.

The first and most important architectural decision was the selection between
custom hardware and a processor-based solution. We decided that the processor
solution was more suitable for this system because it requires less development
time and is more flexible, using microcode for implementing some MAC functions.
This solution may also support future protocol updates and other similar MAC
protocols. The second issue was the selection of the processor core to be integrated
into the MAC chip. The ARM processor was considered to be one of the best
solutions, owing to its 32-bit powerful architecture and low power consumption.
The final step in system specification was to address the major architectural blocks
according to system objectives. These blocks were the memory controller, the phy-
sical attachment interface (PAI), the PCMCIA interface, and various supporting
peripherals (e.g. interrupt controller, timers etc.).

The memory controller should interface the ARM processor with external mem-
ory devices. It should be configurable in order to support different memory devices
and to offer compatibility with the various access modes of ARM. The physical
attachment interface PAI should interface to the physical layer device, implement
all bit-serial tasks (such as CRC checking) and offer a glueless programming inter-
face to baseband and synthesizer devices. It should incorporate FIFOs for temporal
buffering of network data and a DMA engine for transferring blocks of data to and
from the external memory without processor intervention. The PCMCIA block
should offer a glueless interface to the host driver. The peripherals should contain
all the processor support functions such as timers, interrupt handling etc.

In the initial system approach, the external bus was chosen to be 8-bit in order to
minimize the final pin count and the PCMCIA to be 8-bit, based on the assumption
that data exchange does not exceed 2 Mbps. All hardware modules were chosen to
satisfy the AMBA specification (Advanced RISC Machines Ltd 1996b).

2.1.2. The emulator platform development. The second step of the prototyping
phase was the development of a generic emulator board for ARM based architec-
tures. The emulator board contained an ARM processor board with a wrapper
that produces the ARM synchronous bus (ASB) signals. The emulator’s architec-
ture is shown in figure 3. The memory devices contained in the system consist of
SRAM and Flash for microcode development and temporal storage of variables
and network data. The emulator contained all necessary interfaces to be attached
to the PCMCIA bus and to the physical layer implementation.

Field programmable gate arrays (FPGAs) were used for implementing the archi-
tectural blocks defined in the system specification and offer the flexibility for system
update and reconfiguration. More specifically, six FPGAs were used to implement
the MAC functions, four of them connected to the ASB bus and two for implement-
ing the peripheral devices. The ASB-attached FPGAs were used to implement the
memory controller, the PCMCIA interface, the physical attachment interface, and
the ASB-to-APB bridge.

276 M. lliopoulos et al.

RGN)
Ice
ARM core k:& Breaker
Wrapper
12 _sram
FPGA 1 A_/\ <2
FPGA 2 o8
(Memory |[f—N AN =3
Controller) N—/ Ny (PCMCIA) \ﬁ 8§
ASB
FPGA 5 ’ —
(IRC/ j pgrl:)(r;]/:rgls)
Timers) ’ FPGA 3 L
(Decoder / FPGA 4 Socket for
H H Arbiter / PA) || PHY signals
Bridge) \
~
APB

Figure 3. The emulator architecture.

2.1.3. Architecture verification. After the MAC processor modules had been imple-
mented into FPGAs, the emulator board was used for firmware development. The
first aim of the code development was to debug most of the custom hardware
functions, testing each of the hardware modules separately. After debugging the
basic functions, the firmware development targeted the IEEE 802.11 code in order
to evaluate the architecture and to verify its capability to implement the IEEE
802.11 protocol. At the same time a device driver was developed in order to test
the PCMCIA interface. The ARM Software Development Toolkit (ARM SDT)
was the main software development platform used throughout all firmware devel-
opment steps.

During the verification phase, several architectural bottlenecks were addressed,
such as the 8-bit memory bus, which delayed the programme execution of the ARM
processor, and the need for a fast hardware encryption/decryption module. These
two bottlenecks prevented the microcode from achieving several protocol times. The
increase of the external memory bus to 16 bits almost duplicated the processor’s
power, while the hardware encryption module released the CPU from time consum-
ing bit-serial processing. Another enhancement was the integration of the protocol
defined 64-bit timing synchronization function (TSF) timer into hardware which
allowed a more strict control of time dependent functions, such as beaconing and
power saving, and gave the capability to automate transmit/receive through TSF
based mechanisms.

The new architectural considerations (e.g. 16-bit bus, encryption FPGA) were
incorporated in the emulator board together with newer versions of firmware with
enhanced functionality. The emulator was reconfigured using its flexible building
blocks in order to incorporate the encryption/decryption engine (FPGA 1), an
option for 8/16-bit memory bus (FPGA 1), support of the PCMCIA/ISA bus

MAC controller for wireless LAN 277

(FPGA 2), 64-bit TSF and TSF based mechanisms (FPGA 4). These new features
proved that the emulator board could be used for rapid prototyping of custom
ASICs based on the ARM CPU core and not only for the MAC processor devel-
opment. A photograph of the emulator board is given in figure 4.

2.1.4. MAC-layer analyser development. During the initial system debugging
phase, the need for an TEEE 802.11 analyser became apparent, so a simple but
powerful MAC layer protocol analyser was developed. The analyser was used for
monitoring transmitted frames in order to check whether they conformed to the
IEEE 802.11 standard specifications. The analyser consists of a PHY device and
an FPGA that implements all the glue logic for directly attaching to the ISA bus.
Using a device driver, the analyser was capable of receiving and storing
transmitted frames in order to further debug the emulator hardware. Some of the
functions implemented in the analyser were decoding and displaying of headers,
displaying payloads, calculating interarrival times and gathering/displaying
statistics.

At the end of the rapid prototyping phase the behavioural models of the MAC
processor modules were fully debugged and tested, the microcode was developed and
optimized for supporting IEEE 802.11 requirements and the hardware test vectors,
used to debug the FPGA modules, were produced.

2
e
2
]
o
5
2
]
s
-1
1

Figure 4. The emulator board.

278 M. Iliopoulos et al.

2.2. ASIC development

Figure 5 illustrates the various steps of the ASIC development. The first step in
this process was the integration of several behavioural models into a hierarchical
view of the chip. The behaviour of the overall system was simulated using the
functional test vectors produced during the rapid prototyping phase in order to
test the FPGA modules. The functional emulation of the system also incorporated
programme execution in the ARM processor by using the microcode developed to
test the hardware modules in the emulator board. Logic errors were addressed and
the required changes of the behavioural models were performed.

The next step in the ASIC development process was the gate level synthesis of the
Verilog behavioural models using ES2 libraries and Synopsys synthesis tools. An
important issue in this phase was the generation of the constraint files that should be
given as input to the synthesis tools in order to produce efficient structural code. The
constraints included specification of the maximum clock frequency, input/output
delay requirements etc. The output of the synthesis step was a structural system
view which contained information about the gate delays. System timing simulation
gave information on critical paths and defined the maximum clock frequencies.
During timing simulation, the addressed errors required changing of the initial
behavioural models, re-synthesizing and timing verification.

Following the timing verification, the netlist/SDF was generated. The SDF files
contained information about gate fanout, wire loads, transmission and propagation
delay estimations etc. in order to track down possible timing violations. After SDF

7

Verilog
Behavioural
Models

Integration ‘:

Functional i
Simulation :

S
ES2 Design
Libraries
Synopsys
Synthesis Tools

Synthesis

Timing Simulation

SDF Simulation ¥

Hardware Test
Vectors

ARM code

Place and Route

ES2 Fabrication }
process -

_
Fab Test
Vectors

Figure 5. The ASIC development process.

MAC controller for wireless LAN 279

generation, resimulation of the design followed, using minimum and maximum
timing conditions. Timing problems that were addressed during this phase resulted
in slight modifications of the behavioural/structural models and repetition of the
same procedure. This step was finalized when simulations of min/max conditions
produced the same results.

The ‘Place and Route’ process produced the final netlists that contained topolo-
gical information of the cells. Clock trees and reset trees were also generated in this
step. The Place and Route step produced enhanced SDF information, hence new
simulation steps were needed.

The fabrication process was the final step of the ASIC development phase and
produced the files needed by the fabrication to develop the masks. During this step,
fabrication test vectors were generated from the functional test vectors which took
into account the requirements of the available tester.

The masks produced in the final step were sent to the fabrication to proceed to
ASIC manufacturing. After production of the wafer, the parts were tested using
testers that applied the appropriate test patterns to each chip. After cutting, the
‘good’ parts of the wafer were packaged and tested using the functional test vectors.
The packaged ‘error-free’ parts were used for real-time test/verification. The test
procedure used for completing the MAC processor development is presented in § 4.

3. Chip architecture

The MAC processor architecture was finalized at the end of the rapid prototyp-
ing phase and is illustrated in figure 6. The MAC processor architecture was devel-
oped around an ARM core (Advanced RISC Machines Ltd 1996a) and its AMBA
architecture (Advanced RISC Machines Ltd 1996b). The ARM processor controls
all other modules through slave interfaces by using a centralized decoder. The DMA/
master blocks (PAI, WEP, PCMCIA) communicate through common memory,
which is read/written by these blocks, allowing data transfer without processor
intervention. The bus is shared by the requesting masters through a centralized
arbiter. The modules communicate through interrupt mechanisms that are con-
trolled by the interrupt controller, which prioritizes interrupts using the fast and
normal interrupt request lines of the ARM core. The interrupt controller and the
timers module are connected to the ARM peripheral bus (APB) through the bridge
module. The major architectural blocks of the MAC processor chip are the
ARMT7TDMI core with the AMBA wrapper, the physical attachment interface
(PAI), the PCMCIA interface, the wircless equivalent privacy (WEP), the external
memory interface, the AMBA bridge and the AMBA supporting peripherals. The
ARM core implements all the MAC functions, such as frame formatting, DCF,
fragmentation, reassembly, RTS/ACK/CTS. The AMBA wrapper turns the ARM
core signals into AMBA signals according to the AMBA specifications.

The physical attachment interface (PAI) module performs all the necessary func-
tions for interfacing with Wireless PHY's and has been designed to automatically
handle many time-critical physical network management tasks for efficient 802.11
MAC protocol implementation. PAI contains 64-byte transmit and receive FIFOs
and is capable of dynamic DMA operations. PAI also includes a 64-bit time syn-
chronization function (TSF) counter, as specified by the IEEE 802.11 protocol. The
PAI module (shown in figure 7) consists of the receive/transmit control state
machines, the receive/transmit FIFOs with the respective DMA machines, the

280 M. Iliopoulos et al.

~ ARM Core ‘

[

master ASB Wrapper ||

g TXFIFO
o®
PAI
RXFIFO

Decoder /
Arbiter selec
_—

Iinne

T

ioysRW

g ,
I
4 a
E =
i E
External / arg 3
Memory | & [\] _ng:
Interface | » \——/ [/HE—
Controller g

L

=,

ﬁ

Il

l—,] ASB
’7 Bridge]
_peirg |

9| APB pai_irq
Timers iy s[5 l !
e Q !
ﬁ 8 © \ Interrupt | B
— i Controller

Figure 6. The MAC processor architecture.

CRC-32 calculation engine and the control/status registers. The receive/transmit
control state machines control all PAI submodules, using configuration information
from AMBA slave registers, and keep status information about network events. The
transmit/receive DMA machines are programmed to transfer network bytes stored
in FIFOs to and from the memory. The 32-bit receive and transmit bit-serial CRC
engines are used for error checking data. Finally, the AMBA slave control/status
registers are used to pass control information to the state machines or to read status
information from the network. The TSF register is a special control register that
synchronizes MAC functions and network events and is implemented as a 64-bit
counter controlled by the PAIL

The PCMCIA module performs all the necessary functions for communicating
with a host processor. The PCMCIA module is implemented as an AMBA master
module, in order to give to the host the capability to access the MAC processor
memory space. It also contains all the appropriate logic to implement the PCMCIA
2.1/JEIDA 4.2 compatible plug and play standard (PCMCIA/JEIDA, 1995). It
contains a host interface part that implements all the PCMCIA functions and an
AMBA interface part that implements the AMBA master/slave state machines. The

MAC controller for wireless LAN 281

Transmit FIFO -Shift reg T—»

T it CRC
Transmit DMA Engine ra?:;?jlmeR

L—-> Transmit Control _
State Machine |\ 1% Control Signals

— ‘ Registers Baseband& |,
(AMB%\ slave) Synthesiser Serial Interface
State Machine
Receive Control | Ry Conrol Si nals

’ State Machine

master sm

-t

=

tatus

Control

e

Data
Address/Control

tatus

ontrol

_ : ‘ Receive CRC .
<: £ Receive DMA Engine module O
~_ s T
—_— g Receive FIFO Shiftreg < —

—

Figure 7. Physical attachment interface.

two parts communicate through interrupt and registers that are read only by the host
and write only by the ARM, and vice-versa.

The wireless equivalent privacy (WEP) module implements the RC4 algorithm
for encryption, decryption and integrity check of the data. The WEP module is
programmed by the microcode to encrypt/decrypt a block of data in the memory.
A more detailed diagram of the WEP module is illustrated in figure 8 (Iliopoulos and
Antonakopoulos 1999). WEP consists of an RC4 engine that produces pseudoran-
dom numbers, a local SRAM that stores these numbers and a read/write memory
state machine which reads a block of data from memory. This state machine XORs
the data with random numbers and stores them back to the main memory. Finally,
WEP includes an integrity check (ICV) generation engine, which implements parallel
CRC-32 generation according to the B e L ik S T S SR L
x4+ x4 X7+ 2% + x* + x* + x + | generating polynomial.

The external memory interface controller, implemented as an AMBA bus slave
module, performs all the necessary functions for interfacing with external memory
devices supporting all transfer modes of the ARM core and using programmable
wait states. The AMBA bridge module contains all the glue logic for connecting slow
peripherals to the AMBA bus. It works at 1/3 of the speed of the AMBA bus clock
and generates all the necessary peripheral bus signals according to the Advanced
Peripheral Bus (APB) specifications (Advanced RISC Machines Ltd 1996b).

The AMBA slow peripherals are the interrupt controller (IRC) and the timers
(TIM). The IRC drives the fast interrupt request and the interrupt request lines of
the ARM core. It accepts all the interrupt request signals from the other modules
and selects the appropriate interrupt lines according to a fixed priority scheme. The
TIM module is used for MAC specific functions that require accurate time calcula-
tions. It contains two 32-bit counters with independent programmable prescaling
and measures time with up to 50 ns accuracy.

282 M. Iliopoulos et al.

——) IcV

(A?A%g,&s;?arie) ICV calculation
module

@
=
H
SBOX RAM _
I3 (256 bytes) 3 (2 (+)
€ al 15
S ® 8
s Q E
S |8 =] |g I
3 5 |8 &
g ~_~

Data

RC4 random generation
State Machine

Memory read/write
State Machine

b

Figure 8. Wired equivalent privacy module.

The above architecture was evaluated in the emulator board and was used as the
base for the ASIC development presented in § 2. The emulator platform allowed the
firmware team to develop the microcode for IEEE 802.11 functions while the ASIC
was in the fabrication process. The complete IEEE 802.11 microcode was almost
ready before the ASIC became available. After completing all ASIC tests and opti-
mizing the microcode, 20 Kbytes of program were required for implementing the
distributed coordination function (DCF) of the IEEE 802.11 protocol.

4. ASIC testing and experimental results

As stated in § 2, the architectural modules were initially implemented using
FPGAs. The family XC4000 of XILINX was considered best in this case, since it
contains a variety of FPGAs in different speeds and sizes for the same physical
package and pin allocation. For the emulator FPGAs, the parts that could imple-
ment more than 10k equivalent gates and contain internal memories for implemen-
tation of FIFOs and SRAM devices were selected. Table 1 illustrates the
implementation of the hardware modules in the emulator’s FPGAs.

The ASIC was implemented in ES2 0.5 pm technology and packaged in a 144-pin
plastic thin quad flat package (TQFP) suitable for PCMCIA applications. The per-
centage of silicon area required by each block is shown in column 3 of table 1, while
figure 9 illustrates the floorplan of the chip. The macrocells used (ARM core,
SRAM, DualPort RAM) are shown with different shading.

In order to demonstrate the functionality of the chip in a real environment, a
demonstrator board was constructed. The demonstrator board, illustrated in figure
10, is a PCMCIA card that consists of the MAC processor chip, Flash/SRAM
devices, and a PCMCIA type socket for interfacing with the Harris MAC-less

MAC controller for wireless LAN 283

Hardware No. of CLBs/ % of
module % of FPGA used silicon area
PAI 690 CLBs/88% 20%
WEP 315 CLBs/40% 10%
PCMCIA 221 CLBs/28% 7%
MEM_CNTL 118 CLBs/15% 5%
Timers + IRC 310 CLBs/39% 10%
ARM + wrapper ARM board 28%
Memories FPGA internal 16%
Test logic - 4%
Total 1654 CLBs 100%

“For Xilinx XC4020E that contains 20000 equivalent gates.
Table 1. FPGA/ASIC implementation.

TEST LOGIC

TEST LOGIC

ARM Core
Wrapper

Timers / IRC
DPRAM
B4bytes

MEM Controliler

Q
Q
o
a
P
»
w
=

Figure 9. The chip floorplan.

board that uses the PRISM™ chipset (Harris Semiconductor 1997) provided by
Harris Semiconductor. Using the demonstrator board, the MAC processor ASIC
was tested and proved to be fully functional. The test-bench used consisted of three
stations with PCMCIA slots using the demonstrator boards and a fourth station
using the analyser board for capturing and monitoring the packets. The system was
tested on various network applications such as ftp transfers, telnet and web brows-
ing.

One of the tests performed targeted on measuring the chip’s power consumption.
The power consumption measured for 20 MHz clock speed is illustrated in table 2.
According to this table the MAC processor requires a typical power of 185mW,
which is up to 56% less than other MAC implementations as in AMD’s Am76C930
Wireless LAN Medium Access Controller shown in table 3 (Advanced Micro

284 M. IHliopoulos et al.

Figure 10. Demonstrator board.

Symbol Parameter Value Unit
Dual supply (5V 1/O supply; 3.3V core supply)
1CC Core supply current 38 mA
IDD 1/O supply current 12 mA
PW Total power consumption 185 mW
Single supply (3.3 V core and 1/O supply)
ICC Supply current 48 mA
PW Total power consumption 158 mW

Table 2. Power consumption at 20 MHz internal clock.

Symbol Parameter Value Unit
S5V supply

ICC Supply current 85 mA

12%% Total power consumption 425 mW
3.3V supply

ICC Supply current 60 mA

PW Total power consumption 198 mW

Table 3. Am76C930 Power consumption at 20 MHz internal clock.

Devices 1995), while offering more CPU power (MIPS/MHz) at the same clock
speed.

5. Conclusions

The methodology described in this paper gave us the opportunity to produce an
error free ASIC at the first time and to minimize development time. This was
achieved by extensively testing all hardware modules on an emulation platform
using real-time conditions, thus minimizing the risk of errors in the final ASIC.

MAC controller for wireless LAN 285

Moreover, the MAC functions, implemented in microcode, were tested in emulation
hardware and the time-critical processes were addressed at the initial development
phase and transferred into hardware.

Future work in this field will target the new 802.11a (IEEE 1999a) and 802.11b
(IEEE 1999b) higher data rate standards, using the same development platform.
Work has been done also in the area of access points with architectures able to
support ATM/Ethernet to Wireless bridges in a single chip (Iliopoulos er al. 1998).

Acknowledgements

This work was financially supported by the European Union in the framework of
the OMI-ESPRIT ‘VNET -Design, Implementation and Demonstration of an
Adapter card for Wireless Local Area Networks’ Project No. 23631.

References

ADVANCED MICRO DEVICES, 1995, Publication 20183, Rev. A, Am79C930, Penet™—Mobile
Single Chip Wireless LAN Media Access Controller.

ADVANCED RISC MACHINES LTD., 1996a, No: DDI 0100B, ARM Architecture Reference
Manual (Prentice Hall).

ADVANCED RISC MACHINES LTD., 1996b, No: DVI 0010A, Introduction to AMBA.

HARRIS SEMICONDUCTOR, 1997, No. AN9624.3, PRISM 2.4 GHz Direct Sequence Spread
Spectrum Wireless LAN.

IEEE, 1997, Std 802.11-1997: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specification.

IEEE, 1999a, Std 802.11a/D5.0, Draft Supplement to IEEE Std 802.11-1997: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) specification. High Speed
Physical Layer in the S GHz band.

IEEE, 1999b, Std 802.11b/D5.0, Draft Supplement to IEEE Std 802.11-1997: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) specification. Higher
Speed Physical Extension in the 2.4 GHz band.

ILiorouLos, M., and ANTONAKOPOULOS, T., 1999, Hardware implementation of the Wired
LAN Equivalent Privacy (WEP) in 802.11 Wireless LAN. IMACS/IEEE Circuits,
Systems, Communications & Computers (CSCC’99) Conference, Athens, Greece.

ILioPOULOS, M., MANIATOPOULOS, A., and ANTONAKOPOULOS, T., 1998, Bridge-on-a-chip:
Inter-networking ATM with the IEEE 802.11 Wireless LAN. Networks & Optical
Communications (NOC'98) Conference, Manchester UK.

PCMCIA/JEIDA, 1995, No: 0595-02-1000, PCMCIA Card Standard, Electrical Specification,
Vol. 2.

	2001_JournalElectronics_MACcontroller1.pdf
	Reprint

