
Reprint

A Methodology for Implementing Medium Access
Protocols Using a General Parameterized Architecture

 M. Iliopoulos and T. Antonakopoulos

The 11th IEEE International Workshop on Rapid System
Prototyping – RSP’2000

 PARIS, JUNE 2000

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each author's
copyright. In most cases, these works may not be reposted or mass reproduced without the explicit
permission of the copyright holder.

A Methodology of Implementing Medium Access Protocols Using a General
Parameterized Architecture

Marios Iliopoulos, Theodore Antonakopoulos
University of Patras, Dept. of Electrical Engineering and Computers Technology

26500 Rio - Patras, Greece
mariosi@atmel.gr, antonako@ee.upatras.gr

Abstract

The aim of rapid development of communication systems
is to automate the process of transforming the high level
description of a protocol into hardware and software that
would implement the actual system. This paper describes a
methodology used to implement medium access protocols
based on a microprocessor core and a general
parameterized architecture which contains configurable
hardware blocks that can be customized according to the
protocol needs (mainly for frame based networks), thus
reducing the time and effort needed to develop an
embedded communication system.

1. Introduction

The trend in current network design is to combine flexi-
bility and programmability with high performance, low
power consumption and low cost. As shown in Figure 1,
these requirements contradict, since systems based on mi-
croprocessors and Digital Signal Processors (DSPs) may
offer flexibility and programmability, but they require more
power, are less efficient and usually have increased cost.
On the other hand, implementations that use dedicated
logic, which is a characteristic of Application Specific In-
tegrated Circuits (ASICs), are less flexible than any other
solution, since they are targeted only for one application.

From the designer's point of view, systems that are
based on programmable cores, require less development
and testing time than systems which contain dedicated logic
developed from scratch, since a lot of time is consumed for
debugging until the system reaches a stable state. Another
solution is to use a microprossesor supported by reconfigu-
rable hardware (such as FPGAs or CPLDs) during
prototyping to increase the efficiency and performance of
the microprocessor core.

In this paper we consider the last solution of system
prototyping where the microprocessor is supported by
dedicated hardware which is produced automatically from
a general parameterized architecture. The architecture is
based on a library of parametric blocks that are extracted
from the study of various access protocols and can be con-
figured to implement different Medium Access Control
functions. These blocks are interconnected in a flexible
way in order to be adapted to the requirements of different
protocols. This approach has the advantage of rapid system
development, while preserving the cost, power consump-
tion and efficiency requirements of various networks.

��HIILFLHQF\

IO
H
[
LE

LO
LW
\

'LUHFW 0DSSHG

+DUGZDUH

+DUGZDUH
5HFRQILJXUDEOH

3URFHVVRU

��� �����

0236�P:

�� ����

0236�P:

6RIWZDUH

3URJUDPPDEOH
'63

*HQHUDO

3XUSRVH X3

� ���

0236�P:

��� ��

0236�P:

Dedicated Logic

3URJUDP

0HPRU\

0LFUR

SURFHVVRU

5HFRQILJXUDEOH

+DUGZDUH

3URJUDP

0HPRU\

0LFUR

SURFHVVRU

'63 +DUGZDUH

3URJUDP 0HPRU\

0LFURSURFHVVRU

Figure 1. Architectural choices

Section 2 of this paper describes the common functions,
which are met in different MAC protocols. Section 3 intro-
duces the general network architecture and the system ar-
chitecture for implementing MAC processors, while Sec-
tion 4 describes the application of the general network ar-
chitecture to the IEEE 802.11 MAC protocol.

0-7695-0668-2/00 $10.00 � 2000 IEEE

2. Access Protocols Common Functions

The study of various packet based Medium Access
protocols such as IEEE802.11 [1] and Bluetooth [2], that
represent two modern wireless MAC standards, and IEEE
802.3 [3] the most common MAC protocol for wired net-
works, shows that there are many similar functions in all
access protocols. These functions can be categorized as bit-
serial functions that process the serial bit-stream, parallel
functions that process the parallel data, event processing
functions that process the network events, and control
functions that synchronize all the above blocks and consist
of control registers and state machines.

The bit serial functions consist of two main groups of
functions, functions that change the serial bit-stream and
functions that do not alter the bit-stream information but
extract results from its content. The functions that change
the serial bit-stream, like scrambling, whitening, encryp-
tion/decryption are usually cascaded. For example, in Blu-
etooth, each of the serial functions Whitening, Forward
Error Correction (FEC) and Encrypt/Decrypt, has as input
the output of the previous level as illustrated in Figure 2.

On the other hand, functions that do not change the se-
rial bit-stream, like CRC32, access code detection, etc.
usually work in parallel with other bit-serial functions in
order to either check a block of data (like CRC-32) or pro-
duce control information (such as start of reception, syn-
chronization pattern detection etc.).

Encryption Whitening

Serial Bit-
Stream

FEC encoding

Decryption De-Whitening

Serial Bit-
Stream

FEC decoding

Air
Interface

 Figure 2. Cascaded bit serial functions

Like the bit-serial functions, the parallel functions can
either change the content of the parallel data, e.g. parallel
XOR of raw data with a pseudorandom number for en-
cryption/decryption of data, (e.g. the WEP algorithm in
IEEE 802.11 - Figure 3) or add data in certain positions in
the packet format, such as the station address in the source
address field in IEEE 802.3 protocol or the integrity check
value (ICV) of the encrypted packet in IEEE 802.11 proto-
col. Another parallel function is to compare the contents of
the data with predefined values in order to offer control
information to state machines. For example, the decoding
of the address field of the packet in IEEE 802.11 and 802.3
protocols gives the information for unicast, broadcast, or
multicast packets in the receive direction.

Encrypt ion

Pseudo Random
Number Generator

Plaintext

KEY

(+)

Cipher
Text

:
LU
H
OH
V
V

Decrypt ion

Cipher
Text

(+)Plaintext

Pseudo Random
Number Generator KEY

Figure 3. Parallel Encryption/Decryption process

In all Medium Access Controllers there are mechanisms
that recognize events coming either from the network side
(e.g. positive edge on Start of Frame, negative edge on
Packet Done etc.) or from control registers, (e.g. event on a
register bit, a counter overflow etc.). These mechanisms
comprise the events processing section. The events proc-
essing section passes control information to the state ma-
chines section. For example an 'end of receive packet'
event will trigger the back-off calculation algorithm in
IEEE 802.11 and 802.3 MAC protocols.

The control functions use registers that carry control in-
formation which is written by the microprocessor and read
by the rest of the modules, status information which is up-
dated by the modules and read by the microprocessor, or
timing/statistics information which is updated periodically
depending on events (timers). This information is used by
the state machines that monitor and control the rest of the
blocks, for both transmit and receive directions. The state
machines process control information, synchronize events,
and perform protocol specific functions. They work either
synchronously, using the system clock or the network
clock, or asynchronously triggered by events. A special
case is the DMA state machine, which is an optional block
that gives the capability to generate the address and control
signals for transferring the data from/to FIFOs to/from the
memory without microprocessor intervention. If this block
is omitted then the microprocessor is responsible for data
transfers.

In all access protocols FIFOs are required in both direc-
tions in order to isolate the network timing from the node's
internal timing and to generate constant data transmission
and reception. Most of the packet based protocols use the
above blocks according to the flow illustrated in Figure 4.

0-7695-0668-2/00 $10.00 � 2000 IEEE

Bit-Serial
Operat ions

Paral lel
Operat ions

'DWD &ORFN

Buffers

Control
registers
and State
Machines

D M A
(optional)

Bit-Serial
Operat ions

Paral lel
Operat ions

'DWD &ORFN

Buffers

(YHQWV

5
H
F
H
LY
H
'
LU
H
F
WLR

Q

7
U
D
Q
V
P
LW
'
LU
H
F
WL
R
Q

Figure 4. General Architecture Block Diagram

According to this figure, the received serial data are
passed through the bit-serial and parallel operations before
they are stored into buffers and processed by the upper
network layers. The whole process is controlled by the
state machines block which transacts with the above func-
tions and the events coming from the network. Similarly, in
the transmit direction, the data coming from the buffers are
transformed through parallel and bit-serial operations into a
bitstream, which is transmitted over the network.

3. The General Network Architecture

The blocks described in the previous section are com-
bined into a general architecture that is based on the flow
of Figure 4 and is capable of supporting Medium Access
processing of most of the packet based networks. This ar-
chitecture contains parametric blocks that can be tailored to
MAC protocol needs and are interconnected through flexi-
ble interfaces.

There are two main blocks in this architecture, the Re-
ceiver section which contains all the receive related func-
tions (Figure 5), and the Transmitter section that contains
all the transmit related functions (Figure 6). The control
section contains all the control registers that are pro-
grammed/read by the microprocessor through a separate
control interface. The control interface can be a custom
microprocessor interface, or a standard bus. The data
movement from/to the memory is accomplished through a
dedicated path, either transparently without processor in-
tervention by using a DMA engine, or with processor
read/writes where the DMA engine can be omitted. Each of
the transmit/receive section contains the blocks described
in section 2 in a flexible and parameterizable way.

The bit-serial functions block contains an array of bit-
serial functions that are interconnected in such a way that
each of them can work cascaded or in parallel with the oth-
ers through configurable interconnections. In the receive

Figure 5. General Network Architecture-Receiver

RECEIVER Sec t ion

Events

Bit serial Functions

Receive State
Machines Section

Func
1n

Func
12

Func
11

6KLIW 5HJLVWHU

C
on

tr
ol

Control

Func
2n

Func
22

Func
21

Func
mn

Func
m2

Func
m1

5[0HPRU\

'DWD3DWK

3DUDOOHO)XQFWLRQV

P
ar

al
le

l
D

at
a

Control

C
on

tr
ol

Func
11

Func
m1

P
ar

al
le

l
D

at
a

Func
12

Func
m2

Func
1n

Func
mn

FIFO

P
ar

al
le

l
D

at
a

DMA engine

Events
Section

&ORFN

'DWD

State Machine 1

State Machine 2

State Machine n

Receive Control Registers Section

X3 ,QWHUIDFH

Events

0-7695-0668-2/00 $10.00 � 2000 IEEE

side the bit-serial functions block gets input from the net-
work and gives output to the shift register while in the
transmit side gets input from the shift register and outputs
to the network. The parallel functions block contains an
array of parallel functions connected with configurable
interconnections as in the bit-serial functions block. The
parallel functions block interfaces with the shift register
and the FIFOs.

The events section monitors network events and informs
the state machines section which controls and collects
status from all the other blocks in the architecture. FIFOs
are parameterized according to network buffering require-
ments and are connected to the DMA engine blocks or to
the control registers section depending on the data path
implementation.

 The General Network Architecture described can be
customized to MAC protocol requirements in order to pro-
duce the Customized Network Block which fits to a spe-
cific protocol needs. The customized network block to-
gether with a microprocessor and a memory interface can
be easily integrated into an embedded MAC controller, for
rapid development of communication systems (Figure 7).

As illustrated in Figure 7, the embedded MAC control-
ler architecture consists of the customized network block
that interfaces with the network physical device and the
microprocessor. The separate datapath to the memory is
optional and depends on the existence of a DMA block in
the customized architecture. A memory controller inter-
faces the microprocessor and the customized network block

with external memory devices offering a common memory
space to both modules. The microprocessor implements all
the control and management functions of the protocol and
transacts with the customized network architecture by
sending control and accepting status information.

The architecture can be completed with modules such as
UARTs, ISA/PCMCIA interfaces to offer a complete sys-
tem solution. Next section describes the application of the
general network architecture to the implementation of a
MAC processor for IEEE 802.11 networks.

EMBEDDED MAC CONTROLLER

Memory
Control ler

&RQWURO

3DWK

Customized Network
Archi tecture

Microprocessor

FVBVUDP

65$0

)ODVK

data

address

FVBIODVK

&RQWURO 6LJQDOV

 F
ra

m
e

ba
se

d
N

et
w

or
k

Physical
Device

6HULDO FRQWURO EXV

data
clock

cs

tx_data

rx_data
rx_clock

tx_clock

data

address / control

da
ta

ad
dr

es
s

'DWD

3DWK

 Figure 7. System Architecture

Figure 6. General Network Architecture-Transmitter

TRANSMITTER Sect ion

Events

Bi t ser ial Funct ions

Transmit State
Machines Sect ion

Func
1n

Func
12

Func
11 6KLIW 5HJLVWHU

C
on

tr
ol

Control

Func
2n

Func
22

Func
21

Func
m n

Func
m 2

Func
m 1

7[0HPRU\

'DWD3DWK

3DUDOOHO)XQFWLRQV

Control

C
on

tr
ol

Func
11

Func
m 1

P
ar

al
le

l
D

at
a

Func
12

Func
m 2

Func
1n

Func
m n

FIFO

DMA eng ine

Events
Sect ion

State Machine 1

State Machine 2

State Machine n

Transmit Contro l Registers Sect ion

X3 ,QWHUIDFH

Events

&ORFN

'DWD

P
ar

al
le

l
D

at
a

P
ar

al
le

l
D

at
a

0-7695-0668-2/00 $10.00 � 2000 IEEE

4. Application of GNA to the IEEE 802.11
MAC implementation

For the implementation of a MAC processor for the
IEEE 802.11 protocol [4], the general network architecture
should be customized as follows:

The bit serial functions required by the IEEE 802.11 are
two CRC-32 engines, one for transmit direction and one for
receive direction, which calculate the CRC on transmitted
or received serial data. These bit operations do not alter the
serial data that are fed to the shift register device.

The parallel functions in the IEEE 802.11 MAC are
used to XOR the raw data with random numbers in both the
transmit and receive sections for (optional) encryp-

tion/decryption, and to compare the packet address with
predefined station address value (in the receive side) for
recognizing a unicast, broadcast or multicast packet.

The events section recognizes events on Start of Frame,
End of Frame (in the receiver), Start of Transmission, End
of Transmission and Clear Channel Assessment (in the
transmitter). Also the events processing block recognizes
events on TSF register (which is a protocol defined register
for synchronizing network events), DMA control register
etc.

The control registers section contains registers for state
machines, DMA programming, encryption/decryption pro-
gramming, reading network status, synchronizing network
events (TSF timer) etc. The FIFOs in the transmit and re-
ceive directions are 128-bytes long in order to offer appro-

Figure 8. The Customized Network Architecture for IEEE
802.11 MAC implementation

TRANSMITTER Sec t ion

Bit serial Functions

Transmit State
Machines Sect ion

7[0HPRU\

'DWD3DWK

3DUDOOHO)XQFWLRQV

X O R

FRQWURO

DMA Engine Control
State Machine

Contro l

Events

RECEIVER Sec t ion

Start of
Frame Event

End of Frame
Event

Events
Sect ion

Clear
Channel

Assessment
Event

Start of
Transmission

Event

End of
Transmission

Event

Bit serial Functions

Receive State
Machines Sect ion

6KLIW 5HJLVWHU

CRC-32

Control Registers Section
TSF Timer

X3 ,QWHUIDFH

5[0HPRU\

'DWD3DWK

3DUDOOHO)XQFWLRQV

P
ar

al
le

l D
at

a

N
et

w
or

k

Events

X O R

Address
decode

Parallel Data

128-byte
FIFO

P
ar

al
le

l
D

at
a

DMA engine

Receive State
Machine

Pseudo-Random
Number Generator

State Machine

Automatic Control
Frame transmission

state machine

C
on

tr
ol

D
G
G
UH
V
V

P
D
WF
K

FRQWURO

R a n d o m N u m b e r

DMA Engine Control
State Machine

Contro l

Events

Pseudo-Random
Number Generator

State Machine

Transmit State
Machine

C
on

tr
ol

Contro l

C
on

tr
ol

6KLIW 5HJLVWHU

CRC-32

Parallel Data

128-byte
FIFO

DMA engine

P
ar

al
le

l
D

at
a

P
ar

al
le

l
D

at
a

R a n d o m N u m b e r

C
on

tr
ol

'DWD

&ORFN

'DWD

&ORFN

0-7695-0668-2/00 $10.00 � 2000 IEEE

priate buffering for speeds up to 11 Mbps.
In the receive direction there are four state machines.

The receive state machine accepts the receive bytes and
stores them in the FIFO. The random number generator
state machine produces the random numbers that are
XORed with received data in order to be decrypted (op-
tional). The automatic control-frame transmission state
machine automatically transmits control frames when it
recognizes unicast address in a correct reception. The
DMA engine control state machine transfers a block of data
to the memory.

In the transmit direction there are three state machines.
The transmit state machine accepts data from FIFO and
transmits them over the network. The random number gen-
erator state machine produces the random numbers that are
XORed with parrallel data in order to encrypt the trans-
mitted data (optional). The DMA engine control state ma-
chine transfers a block of data from the memory to the
transmit FIFO.

The customized network architecture described above
combined with an ARM microprocessor core and support-
ing peripherals such as interrupt controller, PCMCIA inter-
face, and timers, has been realized in an ASIC.

5. Conclusions

The methodology described in this paper allows the
rapid development of communication systems by automati-
cally generating the supporting hardware from a general
parameterized architecture. This method has the advantages
of a custom solution (efficiency, low power) while keeping
the sense of flexibility and programmability of a micro-
processor.

References

[1] IEEE Std 802.11-1997: Wireless LAN Medium Access Con-
trol (MAC) and Physical Layer (PHY) specification.

[2] Bluetooth Consortium, Specification of the Bluetooth Sys-
tem, version 1.0B, December 1999.

[3] ANSI/IEEE Std 802.3-1996: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) access method and
physical layer specifications.

[4] S. Koutroubinas, A. Maniatopoulos, M. Iliopoulos and T.
Antonakopoulos, V-NET: Design, Implementation and
Demonstration of an Adapter Card for Wireless Local Area
Networks, Bordeaux , EMMSEC ‘98

0-7695-0668-2/00 $10.00 � 2000 IEEE

	2000_SystemPrototyping_MAP1.pdf
	Reprint
	M. Iliopoulos and T. Antonakopoulos

