
Reprint

SOFLOPO: Towards Systematic Software Exploitation
for Low-Power Designs

 G. Sinevriotis, A. Leventis, D. Anastasiadou, C. Stavroulopoulos,

T.Papadopoulos, T. Antonakopoulos and T. Stouraitis

International Symposium on Low Power Electronics and
Design- ISLPED'00

 PALACE RAPALLO/PORTOFINO COAST, ITALY, JULY 26-27, 2000

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each author's
copyright. In most cases, these works may not be reposted or mass reproduced without the explicit
permission of the copyright holder.

SOFLOPO: Towards Systematic Software Exploitation
for Low-Power Designs

Giannis Sinevriotis1, Apostolos Leventis2, Despina Anastasiadou3, Chris
Stavroulopoulos4, Thanasis Papadopoulos5, Theodore Antonakopoulos6, Thanos

Stouraitis7

1Electrical Engineering and Computer Technology Dept,
University of Patras, Rio 26500, Greece

synevrio@ee.upatras.gr
2,3,4,5,6Laboratory of Electromagnetics

Electrical Engineering and Computer Technology Dept,
University of Patras, Rio 26500, Greece

{leventis,desan,cstavr,thanasis,antonako}@loe.ee.upatras.gr
7 Electrical Engineering and Computer Technology Dept,

University of Patras, Rio 26500, Greece
thanos@ee.upatras.gr

Abstract. The SOFLOPO project has dealt with the software-related energy-
optimization for embedded applications. Based upon the fact that software has a
conceivable impact upon the total energy dissipation, we tried to minimize this
impact, using assembly-level code transformations. The instruction costs were
obtained through the tried-and-tested methodology of physical measurements.
Two target processors have been selected: the ARM7TDMI RISC processor
and the Motorola DSP56156 DSP processor. The obtained results were verified
upon a commercial implementation of the IEEE 802.11 wireless multimedia
protocol.

1 Introduction

An ever-increasing number of digital systems in electronics industry are implemented
as embedded applications. Embedded applications are characterized by the splitting of
their functionality between application-specific circuits and application-specific
software running on a dedicated processor. A big portion of embedded applications is
implemented as parts of mobile, battery-operated systems; therefore they are power-
critical. Design for low-power has thus become increasingly important, driving the
need for optimizing every part of such systems.

The software can have a big impact on the power dissipation. This is indicated by
the fact that the battery life of mobile systems, such as portable personal computers,
can vary depending on the software they run. Traditionally, costly simulation of
detailed processor models is needed in order to evaluate the power dissipation of a
processor as it runs some specific software. In most cases, such models are not
available to third parties.

Another option is to evaluate the power dissipation through physical means [4].
The idea is to measure the current that is drawn by a processor as it executes some
software; upon these measurements instruction costs that relate energy dissipation and
software execution are established. The current drawn by the microprocessor as it
executes a specific instruction is a measure of the energy cost of the instruction and
thus of the total energy required to execute a program. The average power P
consumed by a processor while running a certain program is given by: P = I × V,
where I is the average current and V the supply voltage. Therefore, the energy E
consumed by a program is given by: E = I × T, where T is the execution time of the
program. The energy cost of an individual instruction becomes E = I × V × N × t,
where N the required number of clock cycles and t the clock period. Since V, N, t
constant, the consumed energy the consumed energy is a function of the drawn
current.

2 Instruction Level Power Models

It has been shown that the total energy cost of a program cannot be calculated by the
summation of the energy costs of the individual instructions [4-7]. In real programs,
running on real processors, there are other effects that have an impact on the total
energy cost, such as the effect of circuit state and pipeline stalls. These effects have
also to be taken into account in order to establish accurate instruction-level power
models. The components of these power models are:
• Basic Costs. These are the costs that are associated with the basic processing

required to execute the instruction. To determine these costs, infinite loops of a
given instruction are formed and fed to the processor. The construction of these
loops should guarantee that no undesired effects such as pipeline stalls take place.

• Inter-Instruction Effects. The switching activity in a circuit, and therefore the
power consumption it implies, results from the change in two consecutive sets of
inputs. The change in circuit state is bigger between different instructions. For
sequential circuits, the effect of circuit state can expand to many instructions; it
has been shown however that is suffices to examine pair of instructions [4],[7]. To
measure the impact of the change in circuit state the one instruction loops used for
the measurement of basic costs are replaced by sequences of alternating
instructions. The effect of circuit state is determined as the current value measured
minus the average base cost of the two instructions.

• Other effects. These cover all the other processor-specific effects that may affect
the energy dissipation. These include the cost of cache misses (when external
memories are taken into account) and pipeline stalls. Special instruction sequences
that isolate the impact of such effects have to be written and executed.
 Taking these costs into account, the overall energy cost Ep of a program P is

given by Equation (1).

, ,,
() ()p i i i j i j ki i j k

E B N O N E= × + × +∑ ∑ ∑ (1)

Where Bi the base cost of the instruction i, Ni the number of the occurrences of the
instruction i, Oi,j the circuit state overhead from the instruction pair i, j and Ek the
energy costs of other effects. The aforementioned formula provides quite accurate
results in practice [4],[7].

3 Processor Overview

3.1 The ARM7 Processor

The ARM 7TDMI processor core is widely used in embedded applications. Its key
strengths are the small die size combined with market-leading MIPS/mW
performance. Also, its open architecture makes it the obvious choice for the
embedded system designer. A full description of the ARM7 family can be found in
various sources [2].

The instruction set can be divided into three broad classes of instructions that can
be subdivided into subclasses:
• Branch instructions.
• Data-processing instructions.

• Data-processing instructions proper.
• Multiply instructions.
• Status register transfer instructions.

• Load and store instructions.
• Load and store single register value instructions.
• Load and store multiple register value instructions.
• Swap a register value with the value of a memory location instruction.

In addition, every instruction supports multiple addressing modes. Up to 21 distinct
addressing modes may be supported for a single instruction.

3.2 The DSP Processor

On a single semiconductor chip, the DSP56156 comprises a very efficient 16-bit
digital signal processing core, program and data memories, a number of peripherals,
and system support circuitry. This combination of features makes the DSP56156 a
cost-effective, high-performance solution for many DSP applications, especially
speech coding, digital communications, and cellular applications. The central
processing unit of the DSP56156 is the DSP56100 core processor. Like all
DSP56100- based DSPs, the DSP56156 consists of three execution units operating in
parallel, allowing up to six operations to be performed during each instruction cycle.

The instruction set is divided into the following groups:
• Arithmetic
• Logical
• Bit Field Manipulation

• Loop
• Move
• Program Control

4 The Experimental Method

In order to obtain the required instruction costs, a complete laboratory environment
was created. The boards were designed for current measurements and thus the power
supply connection to the CPU core was isolated from the rest of the system. The
measuring environment also includes the required power supplies as well as a high-
accuracy ammeter. The whole environment has been integrated into a host PC. It is
depicted in Figure 1, for the case of the ARM7 processor. A similar setup was used to
evaluate the instruction costs of the DSP processor.

For the case of the DSP processor, a complete board was constructed, so as to be
able to isolate the 56100 processor core from its peripherals. The board is shown in
Fig 2.

We adopt the following methodology in order to gain useful current measurements.
The sequence of tasks is as follows:
• Formulating a sequence of instructions
• Assembling the sequence and downloading it to the target processor
• Running the sequence and taking current measurements
• Transmitting the current measurements to a computer and processing the results in

a worksheet
Special care has to be taken in the formation of the instruction sequences so that

unwanted side effects, such as inter-instruction dependence that causes pipeline stalls
and thus alter the obtained results, are avoided. Also, the registers should be
initialized at the beginning of the sequence, because, as it will be shown later, the
value of the instruction operands may have a significant impact upon the power
dissipation.

PC

RS-232

Power supply

Dev. Board
PSU

Processor
core
PSU

(3.3V)

Embedded ICE
interface

unit

RS-2
32

JTAG
cable

Power supply

Ammeter

ARM
Development

Board

processor
daughter

board

Fig. 1. The ARM7 laboratory setup

Fig. 2. The specially designed board for the current measurements on the Motorola DSP56100
processor core

4.1 The ARM7 Measurements

4.1.1 Basic Costs
A series of measurements was made to determine the basic costs of the ARM
instructions. ARM instructions can be categorized with respect to the addressing
modes they support. A selection of the basic costs of data processing instructions for
all possible addressing modes is shown in Table 1 (All values are in mA). The
instructions are of the form INSTR r0,r1,[r2],[#r3] , where “[]” denotes an optional
operator. It should be noted that the register file was found to be a symmetrical one;
the choice of the specific registers does not affect the power dissipation. Also, all
register values where set to 0, in the loop header. In all, about 500 basic instruction
costs were measured.

It can be noted that there exist sets of instructions that exhibit quite similar power
dissipation characteristics for all the addressing modes. Also, it can be easily noticed
that the addressing modes that include shifting of the result by the contents of the
register r3, are more energy consuming than the rest addressing modes. Moreover,
these addressing modes take two cycles to execute, instead of one.

Similar analysis has taken place for the rest of the instructions. Some of the basic
costs measured are shown in Table 2.

The data values in the registers affect power dissipation. To demonstrate this, a
series of measurements were made in which varying data values where set to the
registers. The results are shown in Table 3. It can be shown that the power dissipation
increases with the number of 1’s in the operands.

Instruction

Addressing Mode ADC AND BIC EOR MOV SUB TST
ASR BY REGISTER 10.68 10.77 10.02 10.39 11.20 9.52 10.73
ASR IMMEDIATE 7.17 7.05 5.71 8.07 8.00 5.74 6.95
ROR REGISTER 10.69 10.77 10.02 10.39 11.21 9.52 10.73
ROR IMMEDIATE 7.24 7.12 5.77 8.14 8.06 5.82 7.02
LSL BY REGISTER 10.81 10.79 10.04 10.42 11.23 9.55 10.76
LSL IMMEDIATE 7.15 7.03 5.67 8.04 7.95 5.72 6.92
LSR BY REGISTER 10.68 10.76 10.01 10.39 11.20 9.52 10.73
LSR IMMEDIATE 7.20 7.08 5.73 8.10 8.01 5.78 6.98
REGISTER 7.00 6.88 5.52 7.89 7.80 5.57 6.76
IMMEDIATE 7.20 7.01 5.86 7.94 8.01 7.00 6.89
RPX 7.06 6.95 5.60 7.93 7.95 5.71 6.83

Table 1. Examples of basic costs of data processing instructions

Instruction Addressing Mode Clock
Cycles

Current
(mA)

MUL - 2-5 13.75
MLA - 3-6 13.44

IMMEDIATE 3 10.76
OFFSET.REGISTER 3 10.95
REGISTER OFFSET, SCALED ASR 3 10.92

LDR

PRE-INDEXED OFFSET, REGISTER 3 9.79
IMMEDIATE 2 8.55
OFFSET.REGISTER 2 8.19
REGISTER OFFSET, SCALED ASR 2 8.57

STR

PRE-INDEXED OFFSET, REGISTER 2 6.72

Table 2. Examples of basic costs of miscellaneous ARM7 instructions

Operand 1 Operand 2 Number of 1s Current (mA)
0 1 1 7.68
0 7 3 7.83
0 63 6 8.03
0 255 8 8.17
0 511 9 8.25
0 65535 16 8.63
0 16777715 24 9.13

255 16777715 32 9.53
65535 16777715 48 9.82

Table 3. Basic costs for the ADD instruction with varying operand values.

4.1.2 Inter-instruction effects

A complete examination of all the inter-instruction effects would require writing the
appropriate instruction sequences for all possible pairs of instructions. Since about
500 single instructions were measured, this would require about 5002 = 250000
instruction sequences. To cope with the complexity of the problem, the instructions
were grouped in sets according to the processor resources they utilize. A bottom-up
approach is taken; firstly possible subgroups are formed according to common
addressing modes and close similarity of he measured basic costs. The inter-
instruction-effects are measured for the instructions belonging in the same group; then
pairs of instructions belonging to different groups are considered. It was found that
the inter-instruction effects when different instructions from same groups are used
are quite close. This can be justified by the fact that instructions within the same

group utilize similar processor resources; therefore switching between them
represents quite similar circuit switching activity. This approach has been validated in
practice using random tests.

Some indicative measurements of the inter-instruction effects are shown in the
Table 4.

Instruction 1 Instruction 2 Measured
Current (mA)

Overhead
(mA)

ADD ASR by Reg ADD Immediate 8.61 0.88
EOR ASR by Imm EOR LSR by Imm 10.45 1.05
ADD Register EOR Register 8.19 0.39
ADD ASR by Reg EOR ROR by Imm 10.64 1.19
MUL ADD Immediate 12.80 1.13
LDR Offset Imm. ADD Immediate 10.33 1.09
STR Offset Imm. SUB Immediate 8.85 1.24

Table 4. Examples of inter-instruction effects

4.2 The DSP Measurements

In a similar fashion to the ARM instructions, the instruction costs of the Motorola
DSP processor were also evaluated. The formulation of the instruction sequences
takes into account the architectural features of the DSP such as the parallel processing
capabilities. Initially we will compute the basic cost of each instruction by
formulating instruction sequences for each DSP instruction.

The DSP architecture can be viewed as three functional units operating in parallel
(Data Arithmetic Logic Unit, Address Generation Unit and Program Control Unit).
The goal of the instruction set is to keep each of these units busy each instruction
cycle. This achieves maximum speed and minimum use of program memory.

Most members of the Arithmetic and Logical groups of instructions allow parallel
data transfers. Thus, different sequences are formulated, which also include these
transfers. In this case, for the instructions which allow these transfers we formulate
sequences two different types of sequences for these instructions- one type without
the parallel transfers and one with these transfers. The bit field manipulation does not
allow parallel transfers so sequences that measure their current consumption are
formulated. The size of the loops depends on the available SRAM on the development
board. The initial size has been set at 10 K program words but the number of
instructions in each loop depends on the number of operands of each instruction. We
have the option of adding further memory to the development board if this is required.

4.3.1 Basic Costs

The Motorola DSP 56156 consists of 53 instructions. Of these, 35 allow simultaneous
parallel moves. Indicative values for the basic costs of these instructions are shown in
Table 5. As in the case of the ARM processor, the register file was found to be a
symmetrical one, i.e. the choice of registers has no impact upon the power dissipation.
Moreover, the effect of the register operands was found to be insignificant compared
to the basic costs. This is due to the fact that the DSP architecture is significantly
bigger than this of the RISC processor.

Type of Instructions Instruction Measured Current (mA)

abs a 70.16
asl a 70.21
Lsl a 70.07 Instr D

zero a 69.02
add a,b 76.85
and x0,a 70.16
sbc x,a 74.67 Instr S,D

div x0,a 75.04
bfchg #$0310,x0 81.50
bfclr #$0310,x:$10 80.69
bftsth #$0310,x:$10 79.82 Bitfield Instructions

bftsth #$0310,x0 72.77
mpy +x0,x0,a 70.14
mpy –y0,a1,b 69.89
mac +x0,x0,b 77.03
imac x1,x0,a 71.74

Instr S1,S2,D

macuu y0,x0,a 73.91
move b,a 70.65 Move move x:(r2)+,a 78.80
asl a (r1)+n1 69.43
rol a a,b 74.29 Instr D with parallel

moves asl a x:(r2+$12),b 84.18
add x0,a a,b 73.46
or x0,a a,b 69.73 Instr S, D with parallel

moves cmp x0,a a,b 69.78
bra 73.55 Special Instructions nop 70.14

Table 5. Examples of DSP base instruction costs

4.3.2 Inter-Instruction Effects

Contrary to the ARM processor, the effect of the circuit state in power dissipation is
rather limited, as a result of the bigger circuit area of the DSP chips. Nonetheless, the

inter-instruction effects for the DSP processor were also measured, albeit in a more
limited scale. In a series of measurements, the inter-instruction effect overhead is
fairly constant; thus this case can be treated as CISC processors described in [4].

5 Software Power Modeling

In order to facilitate the utilization of the instruction measurements by the software
optimizing tools, power dissipation models were developed. These include:

5.1 Grouping of Instructions

This essentially consists of the grouping of instructions that exhibit common power
characteristics so as to simplify the optimization algorithms. As can be seen from the
Table 1 the ADC, AND, TST instructions have essentially the same power dissipation
characteristics. Moreover, this is also true for the inter-instruction effects of these
instructions. Groups of instructions that exhibit such similarities are shown in Table
6.1

Table 6. Examples of instruction groupings

5.2 Operand Value Overhead

There is a strong relationship between the number of 1’s in the instruction operands
and the power dissipation. This is captured in Table 7 for the ALU instructions.
Similar tables have been created for other types of instructions.

Table 7. Percent power dissipation overhead according the number of 1’s (indicative values)

 1 The complete set of the instruction grouping can be found in the project deliverables

Grouping Instructions
1 ADC, TST, AND, CMN, EOR, TQT, ADD, TEQ
2 MOV
3 BIC, CMP, SBC, SUB
4 RSB, RSC
5 STR, STRB
6 LDR, LDRB
7 LDRSB, LDRH, LDRSH

Number of 1’s 3 6 8 16 24 32 48
Percent Overhead 1.2 4.6 6.4 12.4 18.9 24.1 27.8

5.3 Grouping of Inter-Instruction Effects

The percentage of the energy dissipation overhead due to the inter-instruction effects
shows small variations between certain groups of instructions. This happens due to
the fact that certain instructions utilize the same resources; thus the circuit switching
activity between these instructions has very similar value. For the purpose of the
analysis, it suffices to assume some constant overhead for these cases. Examples of
such groupings of inter-instruction effects are shown in Tables 8,9.2

Instruction
Grouping

1 2 3 4 5

1 0.8-2.5 - - - -
2 9.5-11.5 6.5-7.5 - - -
3 9.5-11.5 7.5-9.5 - 4.5 5
4 9.5-11.5 10.5-15 - - -
5 8-10 6.5-8.5 - - -

Table 8. Examples of groupings of the inter-instruction effects for different addressing modes
of the same instruction. The table refers to all data-processing instructions. Groupings represent
different addressing modes. Groups 1,2 consists of 4 addresing modes (entries 1,3,5,7 and
2,4,6,8 in Table 1respectively) while 3,4,5 of a single addresing mode (entries 9,10,11 in Table
1). The entries consist of the variation of the percentage overhead current.

Table 9. Examples of grouping of inter-instruction effects for the same different data
proccesing instructions with common addressing modes. Table entries consist of the percentage
overhead used in the optimization process

 2 The complete set tables for the grouping of the inter-instruction effects can be found in the

project deliverables.

Instruction Grouping Same Group Different Group
ASR by Register 0.25 6.00
ASR by Immediate 1.70 15.00
ROR by Register 0.50 7.00
ROR by Immediate 1.55 15.00
LSL by Register 0.20 7.00
LSL by Immediate 1.50 17.13
LSR by Register 0.25 7.00
LSR by Immediate 1.75 15.00
Register 2.00 12.00
Immediate 2.00 12.00
RPX 2.00 10.00

6 Software Energy Optimization

The results of the above were included in a software tool for the automatic energy
optimization of ARM7 code. The input of the tool is the non-optimized assembly
code. It works in a block-by-block basis in a multi-pass way. The steps taken are:
1. The code is split into basic blocks, i.e. continuous code fragments without

branches. This ensures the required locality for the code transformations (See
Figure 3).

2. The energy cost of the non-optimized code is evaluated by utilizing the power
models referred in Section 5.

3. The code is optimized in a block-by-block fashion using code transformations (see
Section 6.1). The energy cost of the optimized code is evaluated using the same
principles as in step 2. This is repeated until no more improvements are possible.

Fig. 3. Code partitioning into basic blocks

6.1 Low-Power Code Transformations

 A number of transformations were employed to decrease the power dissipation of the
code. The main aim of analyzing the power characteristics of the ARM7 embedded
processor is to gain information in order to drive the software optimization process.
Unfortunately, most of the methods proposed in literature [8],[9], are basically run-
time optimization techniques, that consequently have an advantageous impact on
energy optimization. Thus the number of the applicable code transformations is
limited. These include:

6.1.1 Instruction Strength Reduction
It is possible to replace an expensive operator with a functionally equivalent cheaper
one, in terms of energy dissipation [1]. Such an example is the multiplication i := i*2
that can be replaced by the left shifting i := i<<1. The possibility of such

INSTR1

INSTR2

INSTR3

INSTR4

INSTR5

INSTR6

IF COND goto INSTR3

INSTR1

INSTR2

INSTR3

INSTR4

INSTR5

INSTR6

IF COND goto INSTR3

transformations depends on the instruction set of the target machine: a rich instruction
set may provide more alternatives for strength reduction transformations.

For the ARM instruction set, such possible transformations are shown in Table 103.

Table 10. Examples of code transformations utilized in the SOFLOPO project. #VAL denotes
an immediate value

6.1.2 Software Scheduling for Low-Power

The circuit state overhead cost can vary significantly across different instruction pairs.
It is possible to reduce the power cost of a program by an appropriate ordering of
instructions. This can be implemented in a systematic way, by the modification of the
existing software scheduling algorithms [1],[3]. This looks up the overhead cost tables
and chooses a good schedule that does not violate data dependencies. It can be
implemented with any scheduling algorithm; the list-scheduling algorithm is an
obvious choice. Instead of selecting the next instruction from the ready set by the
assigned priorities, the next instruction is selected upon the minimization of the
overhead cost.

An example of the results of a software-scheduling algorithm is shown in Table 11.

Non-Optimized Code Optimized Code
6.60 6.60 CMP Ra,Rb
1.32

CMP Ra,Rb
1.32

5.63 5.63 SUBCS Ra,Ra,Rb
2.74

SUBCS Ra,Ra,Rb
1.25

8.57 8.55 ADDC Rc,Rd,Re,LSR #1
2.65

ADD Re,Ra,#val
2.65

8.55 8.57 ADD Re,Ra,#val
2.54

ADDC Rc,Rd,Re,LSR #1
1.24

7.72 7.72 SUBC Rc,#val,LSR #3
1.80

SUBC Rc,#val,LSR#3
1.80

BNE Lbl 7.50 BNE Lbl 7.50

Average Instruction Cost 9.27 Average Instruction Cost 8.80

Table 11. Example of software scheduling for low-power. Values in bold typeface denote basic
costs; values in plain format denote inter-instruction effects. All values in mA

 3 The full range of the employed transformations can be found in the project deliverables

Initial Instruction Alternative Instruction
MUL Rx, Rm, Rn (Rn>Rm) MUL Rx, Rn, Rm
ADD Rx, Rm, #VAL SUB Rx, Rm, -(#VAL)
CMP Rm, #VAL CMN Rm, -(#VAL)

7. Obtained Results

The produced software was tested upon the implementation of the IEEE 802.11
wireless multimedia protocol. The energy dissipation of the unoptimized code was
measured; this was compared against the energy dissipation of the optimized code
produced with the application of the developed software. The results have shown
energy savings in the region of 10%.

The fact that the energy dissipation of only the processor core was measured has its
limitations on the achieved results. If one considers complete embedded systems the
savings are expected to be significantly larger, as a result of the big impact that the
memory accesses have on the system’s energy dissipation. Having said that,
measuring the energy dissipation of only the processor core increases the reusability
of our results.

References

1. Alfred V.Aho, Ravi Sethi, Jeffrey D. Ullman, “Compilers: Principles, Techniques and
Tools”, Addison-Wesley, 1986.

2. Dave Jaggar, “Advanced RISC Machines Architectural Reference Manual”, Prentice-Hall,
1996.

3. John L. Hennesy, David A. Patterson, “Computer Architecture: A Quantitative Approach”
, Morgan-Kauffman Publishers, 1996.

4. Vivek Tiwari, Sharad Malik, Andrew Wolfe, “Power Analysis of Embedded Software: A
First Step Towards Software Power Minimization”, IEEE Transanctions on VLSI
Systems, Vol. 2, No. 4, December 1994 pp. 437-445.

5. Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, Masahiro Fujita, “Power Analysis and
Minimization Techniques for Embedded DSP Software”, IEEE Transanctions on VLSI
Systems, Vol. 5, No. 5, March 1997 pp. 123-135.

6. Vivek Tiwari, Sharad Malik, Andrew Wolfe, “Instruction Level Power Analysis and
Optimization of Software”, Journal of VLSI Signal Processing, 1-18(1996), Kluwer
Academic Press.

7. Vivek Tiwari, Mike Tien-Chien Lee, “Power Analysis of a 32-bit Embedded
Microcontroller”, VLSI Design Journal, Vol. 7, No. 3, 1998

8. Vivek Tiwari, Sharad Malik, Andrew Wolfe, “Compilation Techniques for Low Energy:
An Oveview”, Procceding of the 1994 IEEE Symposium on Low Power Electronics, pp.
38-39.

9. Ping-Wen Ong, Ran-Hong Yan, “Power-Conscious Software Design – a Framework for
Modelling Software on Hardware” Procceding of the 1994 IEEE Symposium on Low
Power Electronics, pp. 36-37.

10. Giannis Sinevriotis and Thanos Stouraitis, “Power Analysis of the ARM7 Embedded
Microprocessor”, Procceding of the PATMOS’99 Conference, pp. 261-270

	Instr D
	2000_ISLPED_SOFLOPO1.pdf
	Reprint
	G. Sinevriotis, A. Leventis, D. Anastasiadou, C. Stavroulopoulos, T.Papadopoulos, T. Antonakopoulos and T. Stouraitis

