Reprint

Hardware implementation of the Wired LAN Equivalent
Privacy in 802.11 Wireless LANs

M. lliopoulos and T. Antonakopoulos

The 3rd IMACS-IEEE International Multi-conference on Circuits,
Systems, Communications and Computers — CSCC’99

ATHENS, JULY 1999

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying
this information are expected to adhere to the terms and constraints invoked by each author's copyright. In
most cases, these works may not be reposted or mass reproduced without the explicit permission of the
copyright holder.

Hardware implementation of the Wired LAN Equivalent Privacy
(WEP) in 802.11 Wireless LAN

M. Tliopoulos' and T. Antonakopoulos®

! Atmel-Hellas S.A., Multimedia & Communications Group,
Patras Science Park, Stadiou Street, Platani 26500, Patras.
2 Department of Electrical Engineering and Computers Technology,
University of Patras, Rio 26500, Patras.
GREECE
e-mail: antonako@ee.upatras.gr

Abstract - As wireless LANs become more and more popular, data confidentiality is getting more and more
critical. The IEEE802.11 standard for Wireless LANs (WLANSs), which is a very significant milestone in the
development of the wireless technology, embodies a ciphering/deciphering algorithm to offer wired LAN
equivalent privacy to 802.11 LAN users. The ciphering/deciphering algorithm used in the IEEE802.11
standard is based on the RC4 pseudo-random generator algorithm developed by RSA Data Security Inc. This
paper presents a hardware implementation of this ciphering/deciphering algorithm and describes how this
implementation is integrated in the IEEE802.11 MAC logic.

Key-Words - WEP, RC4, wireless encryption, ciphering, IEEE802.11, ARM

1 Introduction

Wireless Local Area Networks (WLANSs) are used
in a variety of applications and substitute traditional
LANs by providing mobility to their users. All
traditional LANs were developed on the assumption
that only wusers attached to the same wired
transmission medium could exchange MAC frames.
This is a type of privacy, since only authorized users
could be physically attached to the network, and
thus only these users could have access to the
exchanged information. This assumption is not valid
when WLANSs are used, since an external to the
network user could °‘listen’ on the unbounded
transmission medium and collect unauthorized
information. In order to solve this problem and to
provide privacy equivalent to the wired LANSs users,
the IEEE802.11 standard defined the Wired
Equivalent Privacy algorithm [1].

The Wired Equivalent Privacy (WEP) uses a
cryptographic algorithm, or cipher, to encipher or
decipher the user data [2]. Modern cryptographic
algorithms, also called encryption algorithms
(denoted by E), use a key sequence (K) to modify
the plaintext data (P) to produce enciphered data

(©):
Ex(P)=C

The reverse process, called decryption function (D),
operates on the C data block to recreate the initial
data block, P:

Dy(C)=P

A typical cryptographic algorithm can be considered
as an electronic book in which a block of plaintext is
bitwise XORed with a pseudo random key sequence.
In the IEEE802.11 standard, the WEP algorithm,
which uses such a pseudo random sequence, uses
also an integrity check value to protect against
unauthorized data modification. This process is
based on CRC-32 calculations of the initial
plaintext.

A general block diagram showing the E and D
processes is illustrated in Figure 1. As it is shown in
this figure, the plaintext sequence is XORed with the
pseudo random number produced in the encryption
function during the encryption phase and is sent
over the wireless medium. At the end of the data
transmission, the integrity value is XORed with the
next pseudo random value and the enciphered
integrity value is also sent over the air. At the
receiver side, the decryption unit uses the same
pseudo random sequence generator to XOR the

I

! I

KEY PRNG [!

! Cipher ||

| — ‘ Toxt [T %]

} (+) | Wireless
I

: K Plaintext > } —

! I

! I

! Integrity H =

| algorithm N |

}) S Encryption }

Cipher
Text

PRNG

Fig. 1 Block diagram of the Encryption/Decryption process

received data in order to generate the initial plaintext
and then passes the decrypted data to the CRC check
engine. At the end of the packet reception, the
received integrity check value is compared to the
calculated CRC value. If they are the same the frame
is forwarded to the upper layer, otherwise the frame
is rejected.

2 The WEP Algorithm

The IEEE802.11 WEP algorithm uses the RC4
pseudo random generator algorithm [2] as the
encryption function and an Integrity Check
Algorithm (ICV) to protect from unauthorized data
modification. When a packet is encrypted using the
WEP algorithm the transmitted MPDU is expanded
by eight bytes. Four bytes are added at the
beginning of the PDU, and other four bytes are used
at the end. The first three bytes of the IV field
contain a part of the initialization vector (key) used
by RC4, while the fourth byte indexes to one of the
four 40-bit secret keys maintained by the wireless
station. The format of the expanded PDU is shown
in Figure 2.

2.1 The RC4 algorithm

The cryptographic algorithm used in WEP is the
RC4 pseudo random generator algorithm from RSA
Data Security Inc. This algorithm uses a 256-byte
array (S), as the electronic cipher book, and two
pointers i and j in order to produce the random data.
At the beginning, the algorithm initializes each
position of the array with the values 0 to 255. Then,
the algorithm performs 256 random swaps (from 0
to 255), based on the value of the cipher key (K).
The swaps are performed according to the following
procedure:

S[i] - S[j]

where:

j7=G+S[i]+K]i]) mod 256
The symbol ~ is used to denote exchange of
content. These two steps constitute the initialization
phase. At the next step, a random number is
produced at the S position that comes from
S[i]+S[j], where:

i=(i+1) mod 256,
and j=(j+S[i]) mod 256,

and at the same time the following swap is
performed:

S[i] « S[j]

The random number is then XORed with the
plaintext data to produce the ciphered data. Because
of the symmetry of the algorithm the same steps are
applied in order to decrypt the data.

Encrypted————

Data
v (PDU) ICV
4 - 4
>=1
\\ \\\\\
\ N
\ >SS
\ \\\
\\ ~
loctet
Init. Vector
3 pad |Key ID
6 bits | 2 hits

Fig. 2 The expanded IEEES02.11 MAC-PDU

2.2 The ICV algorithm

The ICV is a 32-bit field containing the 32-bit
Cyclic Redundancy Check (CRC). This field is
calculated over the plaintext bytes of the MAC
PDU. This means that the ICV calculation happens
before XORing the data during transmission and
after XORing the data during reception. The ICV
calculates the CRC according to the following
polynomial generator of 32-degree:

G(x) = Oy 2y By Py 16y 12y 1 1048
x A xx+]

The four bytes that remain after encrypting all the
plaintext are appended at the end of MPDU, and are
considered as MPDU data.

Keeping in mind that the RC4 algorithm produces a
random byte in each cycle, the ICV algorithm
should also be capable to calculate the CRC on 8-bit
quantities, hence an 8-bit parallel implementation of
the CRC-32 may be used.

3 WEP Implementation in hardware

The Wireless Equivalent Privacy (WEP) module

implements the RC4 algorithm for data encryption/

decryption. The WEP module is programmed to
encrypt/decrypt a block of data in the memory

automatically without loading the processor. A

detailed diagram of the module that implements the

RC4 algorithm is illustrated in Figure 3. The basic

blocks of the WEP module are:

a) the SBOX array, which stores the random
numbers, and is a 256 byte RAM,

b) the algorithm state machine which implements
the algorithm, produces the pseudo-random
sequence and controls the read/write operations
of data from/to the system RAM, and

c) the CRC32 8-bit parallel engine,
implements the ICV algorithm.

which

The state machine which controls the WEP module
is illustrated in Figure 4. This state machine has five
different stages as explained below, the idle state,
the initialize state, the RandomSwap state, the
RandomGen state and the /CVCalc state.

<«4——Control Bus——»

AA

Read————
- Write———

=, b |
Encr/
i
Decr. & SoFEoF A
y
Address / Data Read——»
State machine Write ——p»

Address >

256-byte
SBOX Array

CRC

CRC32
calculation
module

select

Random

Memory Bus

XOR

DataOut >
=
=
< Dataln
v

Fig. 3 Block diagram of the WEP implementation

Start & SoF

fori=0to 255
sbox[i] =

Start & Not SoF

i=0to255(

j =1+ sbox[i] + K[i] ;
swap (sbox[i] <-> sbox][j]) ;

i=(i+1)mod 256 ;

j =i+ sbox[i];

swap (sbox[i] <-> sbox][j]) ;
random = s[sbox]i] + sbox[j]] ;
ICV = CRC32 XOR random

i=(i+1)mod 256 ;

j =i+ sbox[i];

swap (sbox][i] <-> sbox][j]) ;

Rand random = s[sbox]i] + sbox([j]] ;
ac?e:m dataout = datain XOR random

i=255

Fig. 4 The WEP state machine

In the idle state, the counters that index the SBOX
array are initialized to 0.

In the Initalize and the RandomSwap states, the first
two steps of RC4 algorithm are performed. The
Initalize state needs 256 clock cycles to be
completed, whereas the RandomSwap state needs
1024 steps (1 step to read S[i], one step to read S[j]
= S[S[i[+K[i]+j], 1 step to write S[i] with the
contents of S[j] and 1 step to write S[j] with the
contents of S[i]). These two initialization steps are
performed when a SoF is received otherwise the
state machine proceeds to RandomGen state (and
uses the previously initialized SBOX array).

In the RandomGen state the random numbers are
generated in 5 steps, and are XORed with data
coming from datain. The data are then stored in the
same location in memory. The plaintext data are
also passed to parallel CRC module to calculate the
CRC.

If an EoF signal is received, the state machine
proceeds to ICVCalc state and the CRC data
contained in CRC module are also XORed with
random RC4 numbers and stored in the ICV register.

The steps that are followed in order to

transmit/receive encrypted/decrypted data are the

following:

a) The host processor programs the start address
and size of the block to be encrypted/decrypted

b) Then it programs the cipher key, and asserts a
Start command, plus a Start of Frame (SoF) or
an End of Frame (EoF) command, in order to
proceed to the initialization steps, or ICV
calculation respectively,

¢) The system waits the WEP module to finish, by
polling the start bit or receiving an interrupt, and

d) The data are transmitted, or passed to the upper
layer.

4 WEP Integration

The WEP module was implemented and integrated

in the VirtualNet 802.11 Wireless LAN architecture

as a hardware accelerator module for an ARM-based

MAC controller. The WEP module was interfaced

to the ARM Synchronous Bus [3] as illustrated in

Figure 5. The major blocks of this architecture are

the following:

* The ARM processor which controls all the
functional blocks and performs some of the
MAC layer functions,

* The host interface (i/f) controller which offers an
interface for accessing the local SRAM to an
external host.

e The lower level MAC functions such as TSF
timers and CRC-32 calculation circuit.

¢ The external memory controller which offers an
interface, to external flash/SRAM, and

The WEP module.

External

ic

@ Host I/f
]
2 ARM Core controller
< Host i/f
m [1e] m
@ | External i&’; Qgﬁ
Memory ASB
Interface
Controller

WEP Other MAC
functons
ireless
—\ PHY
signals

Fig. 5 Virtual Net 802.11 architecture

During a typical transmit process using the above
architecture the following steps are performed:

a)

b)

the host i/f controller gains access of the ASB
bus giving the opportunity to the host to fill the
appropriate data buffers in SRAM,

when the host finishes the data preparation
process, constructs the appropriate buffer
descriptors and informs the ARM processor that
a new transmission can take place,

¢)

d)

e)

the ARM processor reads the transmit buffer
descriptors and schedules a transmission
through the MAC functions block. If the
requested transmission is an encrypted one, then
ARM processor also programs the WEP module
to encrypt the data block,

when the WEP module finishes, it appends the
calculated Integrity Check Value and informs
the ARM that the transmission can start, and
the MAC functions block transmits
encrypted data.

the

During the reception of an encrypted frame, the
following process is performed:

a)

b)

The MAC functions block stores the received
frame into a block of the external memory and
informs the ARM processor that a complete
frame has been received.

Then, the ARM processor checks the packet
header in order to determine if this is an
encrypted frame and in that case, it programs the
WEP module with the appropriate cipher key,
The WEP decrypts the data in the external RAM
and informs the ARM processor when the

SimWave 3.15-E [waves.shm)

Fri Mar 5 D&:DB:25 1999

800D

BlockAddr EUDUU

I \B00B I 8010 I 8018

BbckSize oo

oog

BIERIES eS|

Start

UUUL

Encry ph’Decrypt

SoF

Eof!

453741513792E6960 |

e
II Illﬁlll I'IIIIIIIIIIIIIII ®

FiandornFieadyi

idleg_;‘

Initialize !

ﬂéﬂﬂf

RandomSwap '

HardcmGené

ICVCak!

00m 0

Fig. 6 An encryption procedure example.

decryption has been finished, and if the integrity
check was passed,

d) Finally, the ARM processor constructs the
appropriate receive buffer descriptors and
informs the host to pump out the valid data.

A simulated run of the encryption procedure is
illustrated in Figure 6. At time 250000 the start
command forces the WEP machine to leave the idle
state and get into the Inifialize state. At time 263000
the state machine goes into the RandomSwap state
until time 312000. Then the WEP module starts to
produce the random numbers, (each RandomReady
pulse indicates a valid random number). The WEP
module encrypts the eight-byte blocks 8000-8007,
8008-8010, 8010-8018, 8018-8020, using successive
start commands (without requiring re-initialization),
and at the end, it proceeds to the id/e state.

5 Conclusions

The presented hardware implementation of the WEP
algorithm is more than 10 times faster than
microcode implementations, while the silicon area
cost was less then 4000 equivalent gates in ES2 0.5
pm technology. The WEP module was fully tested
and behaves as required, as a hardware acceleration
module in an IEEE802.11 WLAN MAC controller
at 1 and 2 Mbps.

References:

[1] IEEE Std 802.11-1997: “Wireless LAN
Medium Access Control (MAC) and Physical
Layer (PHY) specification”.

[2] Bruce Schneier, “dApplied Cryptography,
Protocols, Algorithms and Source Code in C”,

John Wiley and Sons, Inc., second edition,
1996.

[3] Advanced RISC Machines Ltd., “Introduction
to AMBA”, Document No: ARM DVI 0010A,
1996

	1999_ComputersAndCompEngInControl_HardwareWLAN1.pdf
	Reprint
	M. Iliopoulos and T. Antonakopoulos

