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Abstract: The challenge to increase performance of processing of ASN.1/BER coded network
protocols by hardware implementation is still valid. This work presents a PCI-bus based ASN.]
accelerator that can be used for speeding up the execution of various ASN.1 based protocols in
application areas like electronic messaging systems and image processing devices. The
accelerator is based on a high processing power architecture that incorporates an ARM core, an

ASN.1 coprocessor and multiple local busses.

1. Introduction

The advent of the open systems concept has led to the adoption of international standards (CCITT,
ISO, ETSI, etc.) for data interchange between heterogeneous systems, both through transmission
links and through storage media. Abstract Syntax Notation One (ASN.1) and Basic Encoding
Rules (BER) are common ISO/CCITT standards concerning the encoding and decoding of data
structures [1]. A hardware implementation of these standards is expected to substantially improve
the performance characteristics of communications systems based on OSI (open system
interconnection) standards. Implementing an ASN.1 coprocessor building block in the form of a
“supercell” in the framework of the open microprocessor environment deployed by the Open
Microprocessor Initiative (OMI), alleviates the processing burden and improves the responsiveness
of all compute-intensive communications-oriented data processing applications. Additionally,
users are able to create powerful communications-oriented single-chip systems, by combining
ASN.1 coprocessor supercell with other peripheral supercells (of the cell library developed in the

framework of the OMI program) implementing various types of network connectivity.
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For demonstrating and evaluating the performance of the ASN.1 coprocessor (hardware-based
approach ) a subsystem had been developed in the form of a plug-in board for use in a personal
computer or a workstation. The architecture of this subsystem is the subject of this work,
which was performed in the framework of the ESPRIT-OMI ACCENT project 9169 - "ASN.1
Coprocessor Cell for the European Networking Technology" [2]. The aim of that project was
to develop a supercell for a coprocessor implementing the encoding and decoding of data
structures in accordance to the ASN.1 std. This supercell conforms to the interface standards
defined by OMI for supercell interconnection and thus making possible to combine the
coprocessor with host processor supercells and other peripherals for single-chip system

configurations.

2. The Abstract Syntax Notation One (ASN.1) and the ACCENT Coprocessor

The function of ASN.I, together with the Basic Encoding Rules is to define the relationship
between the meaning of abstract entities and their representation while being transmitted in a
canonical, machine independent form [1]. ASN.1 defines a generalised set of standard
notations for data types, each with a standard representation or encoding. For example, the
standard types include strings, integers, and Booleans, and the standard representations define
how each of these is in turn represented on the communications line as a series of octets. It is
possible to use these types to build other more complex types corresponding to records or
structures in programming languages. The standard representations correspond to the rules for
converting between an internal representation of this format item and the external sequence of
characters. ASN.1 uses a Backus-Naur notation to describe the various permissible forms.
There is a set of built-in types, such as Boolean, Integer, Bitstring and OctetString. Then
variations on these types can be defined, and in particular they can be grouped together into
more complex combinations. Each value of each type is represented as a triple: an identifier, a
length, and the contents. The Basic Encoding Rules are very detailed in specifying the order of
the bits and bytes so that there should be no scope for different interpretation of the received

protocol elements in the way we have seen in diverse computer systems.

Without using ASN.1, the normal approach is to consult some extra compiler information to
determine how enumerated types map onto binary representations, and then to arrange the
declarations accordingly. The explicit association of identifiers with numbers in ASN.1 avoids

having to resort to such privileged information.
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In order to implement these explicit associations and to accelerate the interpretation process,
the ACCENT project developed an ASN.1 coprocessor for performing these functions in

hardware.

The ACCENT coprocessor [3] uses two similar parts, the decoder and the encoder, together
with certain resources that are shared between the two. The function and operation of each of

the constituent blocks is summarised below.

e The protocol memory holds the binary representation of the ASN.1 protocols that the
coprocessor must be capable of handling. This memory is a shared resource for the encoder

and the decoder. It is 16 bits wide and its size is limited to 128 Kbytes.

e Separate micro-program memories are associated to the encoder and the decoder. These

memories are accessed 1 byte at a time and their size is limited to 64 Kbytes.

e A block is used to execute all micro-instructions related to micro-program flow control and

dispatches all other micro-instructions to the other blocks.

e Another block performs the arbitration between the encoder and the decoder for the

allocation and release of shared resources.

e Logic operations and bit handling operations tailored to the processing of ASN.I constructs

are also included, and that block is shared between the encoder and the decoder.

e Comparison operands of various types 16 bits at a time, and an arithmetic unit, with a 32-

bits adder and a 32-bits barrel shifter is also included.

e A block is used for managing the transactions on the coprocessor’s external bus interface
and for exchanging commands, responses, status information, etc. with an external host

processor.
There are various busses that interconnect the coprocessor blocks:
e 16 bits wide input busses allow data exchange between various blocks,

e an 8 bits wide micro-program bus carries data fetched from the respective micro-program
memories, while an 8 bits wide protocol bus is used to supply data fetched from the

protocol memory.

e the coprocessor control bus propagates 12 bits of decoded micro-instructions, while a

shared bus is used to distribute the information on the allocation of shared resources.
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3. The ARM Processor

The ARM6 macrocell (4] is an implementation of the ARM microprocessor for use as a cell on
application or customer specific integrated circuits (ASICS or CSICS). The ARM6 that has
been used in the ASN.l coprocessor, is a general purpose RISC processor which may be
integrated onto an ASIC in conjunction with additional circuitry, e.g. logic, RAM, ROM and
DSP ceils. This 32-bit RISC processor macrocell supports Big and Little Endian operating
modes and has 15 MIPS sustained performance at 25 MHz (25 MIPS peak). Its architecture is
based on Reduced Instruction Set Computer (RISC) principles, and the instruction set and
related decode mechanism are greatly simplified compared with micro-programmed Complex
Instruction Set Computers. This results in a high instruction throughput and impressive real-

time interrupt response from a small and cost-effective chip.

The instruction set of ARMG6 consists of ten basic instruction types. Two of these make use of
the on-chip arithmetic logic unit (ALU), barrel shifter and multiplier to perform high-speed
operations on the data in a bank of 27 registers, each 32 bits wide. Three instruction types
control the transfer of data between main memory and the register bank, one optimised for
flexibility of addressing, another for rapid context switching, and the third for indivisible
semaphore operations. Two instructions control the flow and privilege level of execution, and
the remaining three types are dedicated to the control of external coprocessors which allow the

functionality of the instruction set to be extended off-chip in an open and uniform way.

Pipelining is employed so that all parts of the processing and memory systems can operate
continuously. Typically, while one instruction is being executed, its successor 1s being

decoded, and a third instruction is being fetched from memory.

The memory interface has been designed to allow the performance potential to be realised
without incurring high costs in the memory system. Speed critical control signals are pipelined
to allow system control functions to be implemented in standard low-power logic, and these
control signals facilitate the exploitation of the fast local access modes offered by industry
standard dynamic RAMs. ARMBG is a fully static CMOS implementation of the ARM which
allows the clock to be stopped in any part of the cycle with extremely low residual power

consumption and no loss of state.

The data types the processor supports are Bytes (8 bits) and Words (32 bits), where words must

be aligned to four byte boundaries. Instructions are exactly one word, and data operations are
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only performed on work quantities. Load and store operations can transfer either bytes or

words.

ARMG6 supports six modes of operation:

e User mode: the normal program execution state

e FIQ mode: designed to support a data transfer of channel process
¢ IRQ mode: used for general purpose interrupt handling

¢ Supervisor mode: a protected ode for the operating system

e Abort mode: entered after a data or instruction prefetch abort

s Undefined mode: entered when an undefined instruction is executed

Mode changes may be made under software control or may be brought about by external
interrupts or exception processing. Most application programs will execute in User mode. The
other modes, known as privileged modes, will be entered to service interrupts or exceptions or

to access protected resources.

ARMG6 communicates with its memory system via two 32 bit data buses. It reads instructions
and data from the input bus and writes data to memory on the output bus. In some applications,

these buses can be directly connected to/from a bidirectional bus.

4. The PI Bus

The PI-Bus [5] is an on-chip bus to be used in modular, highly integrated microprocessors and
micro-controllers (systems-on-chips). PI-Bus is designed for memory mapped data transfers
between its bus agents. Bus agents are on-chip function blocks (modules), equipped with a PI-
Bus interface and connected via PI-Bus signals. A PI-Bus agent acts as a PI-Bus master when it
initiates data read or data write operations once bus ownership has been granted to the agent. A
PI-Bus agent which is addressed at a PI-Bus operation acts as a PI-Bus slave when I performs
the requested data read or write operation. Typical masters are processor modules,
coprocessors, or DMA controllers. Typical slaves are on-chip memory and interfaces to the

external world.

To operate, PI-Bus requires an additional bus controller which performs arbitration, address
decoding, and time-out control functions. The bus controller may also be equipped with

implementation dependent functionality, like slave access control features.
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The PI-Bus protocol is oriented towards fast PI-Bus agent accesses as well as to a high transfer
bandwidth. A low-overhead protocol guarantees short response times at PI-Bus accesses which
are needed for time-critical applications. Multiple data transfers allow PI-Bus to operate a high

bandwidth.

Macrocells with a PI-Bus interface can easily be integrated into a chip layout even if they are
designed by different manufacturers. The potential bus agents require only a PI-Bus interface
of low complexity. Since there is no concrete implementation specified, PI-Bus can be adapted
to the individual requirements of the target chip design. E.g. the widths of the address and data

bus may be varied.

The PI-Bus is designed with requirements of high-performance systems in mind. Main features
of the PI-Bus are:

e Processor independent

¢ Demultiplexed operation

e Clock synchronous

e Peak transfer rate of 200 Mbytes/s (@ 50 MHz bus clock)

o Address and data bus scalable (up to 32 bits)

e 8-/16-/32-bit data accesses

¢ Broad range of transfer types from single to multiple data transfers

e Multimaster capability

5. The ASN.1 Accelerator

The ACCENT ASN.1 accelerator board has to use all the above mentioned components in

order to achieve high processing power. Thus, the basic elements of a hardware subsystem for

encoding and decoding of information, according to the ASN.1 standard, are:

e the ASN.1 coprocessor performing encoding and decoding of data tokens according to the
specified ASN.1 grammar,

¢ a local memory to cache processed data tokens and structures to control operation of the
ASN.1 coprocessor,

e a host processor controlling encoding and decoding processes as well as information

interchange with the main system.
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The PI bus connects functional blocks and offers a wide range of functions, with primary focus
on the communication requirements of various peripherals. The subsystem, in turn, is
connected to a main processor through a high-speed industry-standard bus, the PCI bus. The

ASN.1 subsystem, depicted in Fig. 1, is integrated into the system environment.

other subsystems
main connected to
processor main processor

PCI bus

PCI
interface Host
processor

ASN.1

coprocessor local
memory

Fig. | The ASN.1 subsystem

For the subsystem board, different architectures have been considered, which reflect different
approaches of interfacing board modules to the PI bus. The criteria for choosing the board
architecture were: compliance to the PI bus standard and feasibility of implementation. Fig. 2
shows the system architecture in which only the ASN.I coprocessor is equipped with an on-
chip PI bus interface. All other modules are only connected to the relevant address and data
lines of the PI bus and they are controlled in a module-specific way by the extended PI bus
controller. The PI bus is designed with requirements of high-performance systems. Main
features of the PI bus are processor independence, demultiplexed operation, address and data
bus scalable up to 32 bits, 8/16/32-bit data accesses, board range of transfers types from single
to multiple data transfers and multimaster capability. The subsystem board implements a 32-

bit wide data bus and adopts big-endian byte ordering.
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The ASN.1 coprocessor is either clocked by a 50 MHz local oscillator, or the 33 MHz PCI
clock. In the first case, the coprocessor operates asynchronously to the PI bus clock, since its PI
bus interface will synchronize between the internally used clock and the PI bus clock. In the
second case, the coprocessor operates synchronous to the PI bus clock, since the PI bus clock is
the PCI clock divided by 2 or 4. The grammar rules governing the encoding/decoding processes
as well as the encoding/decoding micro-programs, are downloaded into local coprocessor
memories: a memory area (32Kx8) for encoder micro-program, a memory area (32Kx8) for
decoder micro-program and a memory area (128Kx16) for the protocol representation. The

coprocessor can be a master or a slave of the PI bus.

'PIE subsystem

— E t UART EPROM
— : PCI connector
RS-232C L1
connector local ;
RAM ARM60 I
......................................................................... shared PCI
J RAM controller
extended
Pl bus
controller
PI bus
PI interface
encoder decoder
RAM ASN.1 RAM
coprocessor
protocol
RAM

Fig.2 The subsystem board architecture

As host processor the ARM6 processor is used, which is designed specifically for embedded
applications. The ARM6 processor has exclusive access to: a 128Kx32 RAM area for data and

program storage, a 128Kx8 EPROM for bootstrap and self-test firmware and a UART for serial
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communications. The ARM PIE subsystem is also a convenient means of evaluating the ASN.1
subsystem board. The ARM®6 processor is clocked by the PI bus clock and can be a master of
the PI bus.

The shared memory area (SRAM) is used to exchange data between the ARM6 host processor
and the ASN.1 coprocessor, and the subsystem and the main system via the PCI controller, and
is made up of a single module with size 256Kx32. The subsystem board allows to mount two

of these modules. The shared RAM can be a slave of the PI bus.

The main system and the subsystem can exchange data, control and status information over a
powerful and flexible chip, the AMCC S5933 PCI controller. With a 32-bit PCI bus the S5933
can attain the peak transfer capabilities of 132 MByte/sec. The PCI controller can be a slave of

the PI bus.

Finally, the extended PI controller does not only implement PI bus controller functionality, it
also implements PI bus interfaces to various board modules; it controls and monitors the PCI
controller, the shared RAM and the ARM®6 host processor. This extended PI bus controller is

implemented in an XC4010 FPGA and is described with more details below.

This architecture allows to use devices that are not compliant to the PI bus standard. So the
criterion for compliance to the PI bus standard is satisfied by implementing the Pl bus
interfaces for each module in the extended PI bus controller. Furthermore, board space is saved
since PI bus interfaces are integrated with other functional blocks into the extended PI bus

controller, meeting the criterion for feasibility of the implementation.

Pl Bus Controller implementation: The extended PI bus controller is implemented by an
XC4010 FPGA. The block diagram of the extended PI bus controller is outlined in Fig. 3. This
controller can function as a PI bus controller, a PI bus master and a PI bus slave. As a PI bus
controller, the FPGA performs the following tasks: arbitration for bus ownership, address
decoding/slave module selection and a time-out control. Bus control has to arbitrate which
master is granted the requested bus ownership in accordance to the priority assignments for the
PI bus master modules. If no master requests the bus, grant is given by default to one master.
The address decoding mechanism determines the target slave of a bus operation by decoding
the upper bits of the address issued by the granted master. The time-out mechanism is intended

for bus operations which are not completed by the selected slave.
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Fig. 3 Extended PI bus controller block diagram

As a PI bus master, the FPGA implements DMA transfers between the PCI controller and the
shared RAM. In this case, the FPGA is not a true PI bus master since it does not read or write
data itself, but it controls the PCI controller and the shared RAM to make these modules
exchange data. As a PCI bus slave, the FPGA allows access to its I/O registers. These registers
are a DMA control register, an interrupt identifier register and a time-out control register. The
ARMEG6 processor may trigger the extended PI bus controller to operate as a DMA controller by
writing the DMA control register. The FPGA may generate an interrupt to the ARM6 processor
and then the processor has to read the interrupt identifier register to find out which device was
the interrupt source (the PCI controller, the ASN. 1 coprocessor, the extended PI bus
controller). The time-out control register may be written by a PI bus master module to
configure the number of PI bus clock cycles that triggers a time-out event. Furthermore, the
extended PI bus controller implements the PI bus slave interface of the PCI controller and the
shared RAM and the PI bus master interface of the ARM PIE subsystem, since these devices

are not compliant to the PI bus standard. It also implements an alignment on the ASN.I

10
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coprocessor data bus, since the coprocessor implements right alignment on its data bus and the
extended PI bus controller must take care to locate the bytes on their natural byte lanes.
Finally, the extended PI bus controller divides the PCI clock by 2 or 4 to generate the PI bus

clock.

The presented ASN.1 accelerator has been fully tested and evaluated and it is used by various
European companies for building applications in the areas of electronic messaging and image

coding.

6. Conclusions

An ASN.1 acceleration subsystem has been implemented by incorporating the ASN.]
coprocessor, a host processor, common memory and an interface to PCI bus. This subsystem is
usable for various types of applications, differentiated by the software downloaded to the
subsystem. The ASN.!] accelerator has been used in a message handling system for speeding
up the document processing, message handling and system management functions. It has also

been used for encoding/decoding image data according to the IPI-IIF ASN.1 grammar.
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