
Phase-Change Memory Controller Architecture for
Low-Latency Access in OpenPOWER Systems
A. Prodromakis∗, N. Papandreou†, E. Bougioukou∗, U. Egger†, N. Toulgaridis∗, Th. Antonakopoulos∗,

H. Pozidis†, E. Eleftheriou†
†IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

∗University of Patras, 26500, Rio-Patras, Greece

Abstract— Novel forms of nonvolatile memory, such as phase-
change memory (PCM), promise low latency and small gran-
ularity of read and write access at high storage density. They
also feature very high endurance. These characteristics make
them highly desirable for emerging high-capacity (hybrid) mem-
ory applications such as in-memory databases and in-memory
processing. In this work we present the architecture, imple-
mentation and experimental performance results of an FPGA-
based PCM memory controller for OpenPOWER servers. The
memory controller leverages the Coherent Accelerator Processor
Interface (CAPI) of the POWER processor in order to offer
low-latency access to the CPU memory space. In addition, the
memory controller implements an efficient management protocol
that supports a dynamic size of pending read and write requests
in order to offer high bandwidth under mixed-type workloads.
We describe the architecture and implementation details of the
memory controller and we demonstrate its performance using
a prototype platform based on different types of OpenPOWER
servers equipped with CAPI-enabled FPGA cards. The developed
PCM controller is evaluated in terms of sustained data rates
(MBps) and access latency (us). Experimental results are based
on legacy commercial 90nm PCM chips as well as on accurate
HW emulation of next generation PCM chips.

I. INTRODUCTION

In the last few years we are witnessing the emergence of
new forms of nonvolatile memory (NVM), such as phase-
change memory (PCM), magnetic random access memory
and resistive random access memory. These new memory
technologies exhibit a combination of characteristics that make
them at least partially suitable for both main memory and
storage applications. In particular, they have fast read and
write access time with respective latencies ranging between
50ns to 1us, they have good endurance that typically exceeds 1
million write cycles, they can be written in place and the allow
byte-level access granularity. In addition, they are nonvolatile,
have moderate-to-long data retention, and exhibit excellent
scalability, making them amenable to integration at very high
storage densities. As a result, these new NVM technologies
appear ready to establish a new tier in the memory hierarchy
in between today’s DRAM and NAND Flash technologies. At
the same time, they promise to enable new applications such
as hybrid memory, i.e., a combination of DRAM as a small
main memory and NVM as the large far memory, or fast-
durable storage where the NVM is used as a cache for hot
data in front of a Flash storage pool.

Together with the big promises often come significant
system-level integration challenges [1]. One such challenge

stems from the low read/write (R/W) access latency offered
by the new NVM technologies, in particular for storage-type
applications. Specifically, attaching NVM to the host through
the I/O bus and accessing it via a conventional storage protocol
will likely add substantial access time overhead and thus the
low-latency potential of the NVM will be unrealized. This
is because legacy storage protocols have been designed to
interface with hard disk drives originally and lately also with
Flash, however new NVM is 2-3 orders of magnitude faster
than Flash. Therefore, there is a need to re-design storage
access protocols in a way that unleash the NVM low-latency
potential.

In this work we present an approach that facilitates fast
access to PCM. PCM has developed into a mature technology
and is considered the top contender for realizing storage-
class memory [2], [3]. The paper presents the architecture of
an FPGA-based PCM memory controller for OpenPOWER
servers. The memory controller leverages the Coherent Accel-
erator Processor Interface (CAPI) of the POWER processor
in order to offer low-latency access to the CPU memory
space. We describe the implementation details of the PCM
controller and we demonstrate its performance using a pro-
totype platform that consists of different servers equipped
with CAPI-enabled FPGA cards. We showcase the system
performance using custom DIMMs designed with legacy 90nm
PCM chips as well as based on accurate HW emulation of next
generation PCM technology. We discuss the architecture of the
two controller design and evaluate their performance in terms
of sustained data rates and access latency.

II. FPGA ARCHITECTURE

Fig. 1 illustrates the general architecture of the system that
consists of the POWER8 server equipped with a PCIe-Gen3
FPGA card that interfaces to custom designed DIMM modules
populated with PCM chips. Fig. 1 presents the CAPI-based
PCM controller. The FPGA implements the Power Service
Layer (PSL) along with a custom Accelerator Functional Unit
(AFU) to enable the Host application running on the POWER8
server to access the PCM memory over the CAPI interface.
The basic memory controller implements a seamless CAPI
adaptation layer (CAL) to the AFU and in addition integrates
the data and address management as well as the PHY opera-
tions to the PCM DIMM modules. The next sections describes
the details of the FPGA architecture.



Fig. 1. General system architecture comprising of a POWER8 server
equipped with a PCIe-Gen3 FPGA card that connects to custom PCM DIMMs.

A. Accelerator Functional Unit

The FPGA architecture of the PCM controller design con-
sists of three main parts: the PSL which enables the FPGA
device to communicate with a CAPI-enabled POWER8 server
over the PCIe bus, a custom AFU that implements the man-
agement of the read and write requests from the Host over
the CAPI protocol and the basic PCM memory controller
that implements the low-level memory managements and PHY
operations.

In particular, PSL allows the FPGA device to communicate
with a CAPI-enabled POWER8 server [4]. PSL provides
memory address translation via a memory management unit,
which allows an AFU to use effective addresses in order to
reference data structures in the same manner that they are used
by software applications running on the Host CPU. The PSL
to AFU interface consists of five independent interfaces that
allow the AFU to access the system memory through load and
store requests which are cache-line oriented (128 bytes). The
MMIO and Control interfaces allow the software application
to read and control the status of the AFU, while the Command,
Buffer and Response interfaces allow the AFU to access data
in the system memory.

The task that the AFU has been assigned to execute is
defined by a Work Element Descriptor (WED). A WED is
generated by the Host application and has a fixed size of 128
bytes. In our application a WED supports a varying number
of one to eight commands. Each command has a length of
16 bytes and contains a Command Field that specifies the
command type (read or write) and the block size (in multiples
of 128 bytes), a Device Cache-line Offset Field that refers
to the block offset in the device memory, and a Host Base
Address Field that refers to the effective base address in the
Host memory. This structure allows full utilization of the WED
size and enables multiple threads running on the Host to form
a single WED with multiple commands. The Host activates an
AFU by sending a WED pointer.

Fig. 2 describes the architecture of our custom AFU that
consist of two main parts. The first part implements the logic
to meet the timing and synchronization requirements of the
PSL interface as well as a buffering stage where the 64-bit
effective base addresses of incoming WED pointers are stored.
The second part of the AFU core consists of the master FSM
and four special engines. The master FSM checks the status
of the WED pointer FIFO and if there are pending request it
activates the RWED engine. The latter is responsible to request

Fig. 2. Architecture of the CAPI-based accelerator functional unit (AFU).

and decode the WED content from the Host. Depending on the
type of the incoming request, i.e. read or write, the master FSM
activates the Read or Write Engine, respectively. PSL supports
a maximum of 64 outstanding credit-based load and store
requests. The Write and Read Engines implement the logic to
utilize the maximum throughput by supplying the PSL with
the maximum number of outstanding requests continuously.
Moreover, they support re-ordering of command and data from
PSL to further utilize performance under sequential workloads.
When a command is completed, the UWED updates the WED
structure in the system memory to acknowledge the comple-
tion of the particular WED. For write commands, completion
is acknowledged when all data requests have been forwarded
to the PCM controller. For read commands, completion is
acknowledged when the AFU has sent all the data to the PSL.

The AFU interfaces with the PCM controller via the CAL
interface which was designed in order to decouple the memory
controller from the complexity of decoding, managing and
servicing the WEDs. The CAL interface runs at 250 MHz
clock frequency with two independent write and read paths,
with 1024 bits and 64 bits data and address buses, respectively.
For a write request, AFU sends the address, data and a write
enable signal to CAL in one clock cycle, while CAL responds
with a write ready signal if it can accept new requests.
Similarly, for a read request, if the read ready signal is active,
the AFU issues a read request by sending the read address and
a read enable signal. CAL return the read data along with a
valid signal after a number of clock cycles that depend on the
latencies of the memory controller and of the memory chip.

B. Phase-Change Memory Controller

Two different PCM controllers have been designed and im-
plemented. The first controller is based on legacy commercial
90 nm SLC PCM chips and the second one is based on next
generation SLC and MLC PCM chip specifications. Fig. 3
illustrates the memory controller architecture for the legacy
90nm PCM chips. These particular chips use a serial interface
of 66 MHz that accommodates data and address bytes on the
same signals and supports 64 byte R/W accesses. The PCM
channel is organized in a novel 2D architecture that allows



Fig. 3. Memory controller architecture for the legacy SLC PCM chip.

Fig. 4. Memory controller architecture for next generation PCM technology.

multiple chips to be organized into stripes and accessed in
parallel. The channel controller operates at 125 MHz clock
frequency and requires 16-bit wide address-bus and data-bus,
therefore CAL implements the appropriate data width and
clock domain conversion circuits. The Address Management
Unit (AMU) is responsible for mapping the user addresses
into channel and stripe addresses. In the write path, data and
address are multiplexed following the chip serial specifications
and sent to the channel controller. The PCM channel controller
and PHY circuit implement the physical layer interface to the
PCM chips. CAL supports R/E request from the AFU with a
granularity of 128 bytes which are serviced by 2 PCM chips
that belong to the same stripe. These chips have a typical
page program cycle time of 120 us while read requests can be
serviced continuously. The current CAL architecture supports
up to eight PCM channels.

Fig. 4 illustrates the memory controller architecture for next
generation PCM technology. Due to lack of commercial chips
and in order to be able to test the system we have assumed
a DDR3-compatible PCM chip interface and used DRAM
modules to perform real time R/W access. However, in order
to expose the Host application to the latency characteristics
of the PCM technology, the memory controller implements
the read and write access latency and active bank constraints
of the PCM chip. In particular, we have assumed the spec-
ifications from state of the art 25nm PCM chips [5]. The
AMU unit maps the received flat addresses into bank, row and
column addresses to be written on the two SODIMM channels
available in the FPGA card. The memory controller supports
multiple configurations of the two SODIMM channels, i.e.

(a) Legacy 90nm PCM chips

(b) Next generation PCM chip

IBM Power 
System S812LC

Tyan Palmetto - OpenPOWER CRS

PCIe-Gen3 FPGA card

PCM PCM

PCM PCM

PCM PCM

Custom 
PCM-DIMM

adapters

PCM CTRL

AFU

PSL

CAPI

IBM Power Server S812LC
� 8-core 3.32 GHz POWER8 processor
� 4 GB 1333MHz DDR3 DIMM memory
� CAPI enabled PCIe-Gen3 slot

Tyan Palmetto - Custom Reference System
� 8-core 3.32 GHz POWER8 processor
� 16 GB 1333MHz DDR3 DIMM memory
� CAPI enabled PCIe-Gen3 slot

Fig. 5. Demonstration platform that comprises of two OpenPOWER servers
each equipped with a Gen3-PCIe FPGA and custom DIMMs with PCM chips.

the controller can access less than 8 chips per SODIMM, in
order to address the different requirements of extra parity chips
for SLC or MLC PCM technology. The Data Management
Unit (DMU) implements a BCH interleaved error correction
encoder and decoder. In the current implementation every
write request of 128 bytes is converted into four 256 bit
codewords. The encoded data are sent to the two channels
using dedicated PHY based on the DDR3 Memory Interface
Generator (MIG) IP cores. User data are send to the first
channel and parity data to the second one. A Control Logic
unit is utilized to synchronize the two MIG interfaces. The
proposed architecture can emulate different parameters for the
PCM technology in terms of R/W access latency and thus it
provides a flexible platform to study the performance of the
new non-volatile memory in the system.

III. PERFORMANCE MEASUREMENTS

In order to evaluate the performance and end-to-end latency
of the system we developed a benchmark tool based on the
CAPI library. The tool runs on the POWER server and inte-
grates special API functions to open, enable, communicate and
close the AFU device in the FPGA card. In the current version,
the tool generates a constant flow of random or sequential
read or write traffic. The requests to the AFU are generated
by sending the corresponding WED pointers. The data size
associated with each request can vary from a minimum of
128 bytes to a few megabytes. In addition, the tool collects
and reports statistics regarding throughput and latency. For
throughput measurements, the tool generates a number of
read and write requests of fixed data size, it records the total
elapsed time up to the completion of the last request and finally
calculates the performance. For latency measurements, the tool
generates a number of read and write requests and in this case
it waits for each request to be completed before sending the
next one. For each issued request it records the elapsed time.



0 5 10 15 20 25
98.0

99.0

99.5

99.9
100.0

Latency (us)

C
D

F
 (

%
)

(a) legacy 90nm PCM

 

 

Write
Read

0 5 10 15 20 25
98.0

99.0

99.5

99.9
100.0

Latency (us)

C
D

F
 (

%
)

(b) next generation PCM

 

 

Write
Read

Fig. 6. Cumulative distribution function of end-to-end Write and Read access
latency of 128 bytes using (a) the legacy 90-nm PCM chip and (b) the HW
emulation of next generation PCM technology.

TABLE I
LATENCY OF 128B WRITE-READ ACCESS

Legacy 90nm PCM chip 50% 99% 99.9%

Write 2.9 us 3.1 us 4.1 us

Read 8.6 us 8.8 us 13.8 us

Next generation PCM chip 50% 99% 99.9%

Write 2.9 us 3.1 us 4.1 us

Read 3.7 us 3.9 us 4.7 us

A. Demonstration platform

Fig. 5 illustrates the demonstration platform that consist of
an IBM POWER8 server and a Tyan Palmetto P8 development
platform both equipped with an ADM-PCIE-7V3 FPGA card
with a Xilinx FPGA. Special DIMMs have been used for both
the legacy as well as for next generation PCM chips. The
DIMMs are directly connected to each FPGA card via custom
SODIMM adapters. Both servers are CAPI-enabled and access
the PCM chips via the CAPI-based memory controllers.

B. Results

Fig. 6 shows the cumulative distribution function (CDF) of
the latency of each controller for 128 byte write and read
access while Table I reports the 50%, 90% and 99.9% values.
For both controllers, 99% of the writes complete within 3.1
us. For the next generation chip, 99% of the reads complete
within 3.9 us while for the legacy PCM the latency increases
to 8.8 us, however half of this value is due to the slow serial
command/data interface of the PCM chip. We have measured
very similar results for both servers shown in Fig. 5.

Fig. 7 shows the throughput performance of the next gener-
ation PCM controller for sequential read and write workloads
when multiple threads are running in the Host CPU. Thanks to
the WED management protocol that supports a dynamic size

1 10
10

100

1000

Block Size (kB)

B
an

dw
id

th
 (

M
B

ps
)

(a) Write

 

 

Threads 1
Threads 2
Threads 4
Threads 8

1 10
10

100

1000

Block Size (kB)

B
an

dw
id

th
 (

M
B

ps
)

(b) Read

 

 

Threads 1
Threads 2
Threads 4
Threads 8

Max

Max

Fig. 7. Throughput performance of (a) write and (b) read measured for the
next generation PCM chip under different number of threads running in the
Host CPU.

of pending read and write requests described in Section II-A,
the system performance increases with increasing number of
threads and approaches the maximum throughput determined
by the PHY specifications of the PCM chip technology.

IV. CONCLUSION

In this paper, we presented the FPGA architecture and
implementation details of a PCM memory controller that
leverages the CAPI interface in order to offer low-latency
access to a POWER8 server. We demonstrated performance
results using specially designed PCM-based DIMM modules
using legacy 90nm SLC chip and via HW emulation of next
generation PCM technology. A special WED management
scheme allows full utilization of the available bandwidth of
the PCM chips.

ACKNOWLEDGMENTS

We gratefully acknowledge our colleagues at IBM Research
- Zurich, R. Polig, H. Giefers and C. Hagleitner, for their help
in bringing up the CAPI functionality.

REFERENCES

[1] H. Hunter, L. A. Lastras-Montao, and B. Bhattacharjee, “Adapting server
systems for new memory technologies,” Computer, vol. 47, no. 9, pp.
78–84, Sept. 2014.

[2] R. Freitas and W. Wilcke, “Storage-class memory: The next storage
system technology,” IBM J. Res. Develop., vol. 52, no. 4.5, pp. 439–447,
July 2008.

[3] R. Haas, X.-Y. Hu, I. Koltsidas, and R. Pletka, “Subsystem and system-
level implications of pcm,” in European Phase Change and Ovonics
Symposium (EPCOS), 2011.

[4] “Keynote talk by dr. jeff stuecheli: Open innovation with power8,” in
IEEE 25th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), June 2014, pp. 1–1.

[5] J. Cheon, I. Lee, C. Ahn, M. Stanisavljevic, A. Athmanathan, N. Papan-
dreou, H. Pozidis, E. Eleftheriou, M. Shin, T. Kim, J. H. Kang, and J. H.
Chun, “Non-resistance metric based read scheme for multi-level pcram
in 25 nm technology,” in IEEE Custom Integrated Circuits Conference
(CICC), Sept 2015, pp. 1–4.


