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Abstract—This work focuses on modeling the dynamics of
MEMS-based mobile devices, when are subject to speed-
controlled human motion, using measurements from accelerome-
ters mounted on the device’s frame. The measurement procedure
and used data acquisition setup, indicative measurements show-
ing the effect of physical system characteristics on the resulting
acceleration signal diversity, the collected data analysis, as well as
the selected modeling approach based on Hidden Markov Models
(HMM) are presented and analyzed. Finally, simulation results
of the proposed model’s performance are discussed.

Index Terms—MEMS, HMM, Modeling, Dynamics, Accelera-
tion.

I. INTRODUCTION

The constantly shrinking size of mobile devices together

with the new requirements of emerging consumer applications

has led to an apparent need for new, more compact and higher

density storage technologies. Micro-Electro-Mechanical Sys-

tems (MEMS)-based storage technology appears to be a

promising approach offering attractive features such as ex-

tremely high densities, low power consumption and low cost.

The major MEMS storage projects at IBM Research [1],

HP Laboratories [2] and Carnegie Mellon University [3]

use different recording technologies, but similar mechanics,

comprising of arrays with hundreds or thousands of probes

positioned above the storage medium. The arrays are activated

simultaneously and move short precise distances laterally

and longitudinally using an electromechanical nanopositioning

system of sensors and actuators.

However, the inherent mobility of the data recording mech-

anism makes these systems prone to oscillations and position-

ing inaccuracies caused by external acceleration disturbances

imposed on most mobile devices. Furthermore, considering

the nanometer-scale precision limits for reliable information

recording/retrieval [4], significant burst-errors are highly likely

to occur leading to overall system efficiency degradation. Due

to their vast variety in form and time-scale, such disturbances

cannot always be adequately grouped and modeled. In some

cases, however, such as human motion acceleration, which can

be considered as a rather frequent disturbance source owing to

mobility, a coarse pattern periodicity can be identified. Thus, a

probabilistic signal generation model can be extracted, capable

of producing human motion acceleration patterns and variants
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Fig. 1. Human running/walking motion acceleration experimental setup and
data acquisition system.

while preserving basic statistical characteristics and shape-

profiles close to those of measured actual signals.

The necessity of such a model is twofold: first it provides a

tool for generating various acceleration time-series profiles in

the laboratory environment as input to both system-modeling

in simulation and device-testing on vibration testing equipment

such as vibration tables. Second, in typical MEMS-based

storage systems, information is organized in sectors, with

each sector recording/retrieval operation time-span being in

the order of some microseconds [1], which is clearly outgrown

from the human motion pattern’s period (order of hundrends of

msecs) by at least one order of magnitude as will be shown in

Section III. Based on this, it can be readily assumed that during

a single access operation, the device is inside a specific region

of the pattern. Thus, the a priori knowledge of the disturbance

characteristics can be exploited in order to improve several

subsystems. In positioning control algorithms, for evaluation,

prediction of highly probable forthcoming disturbance con-

ditions, and appropriate parameter-adaptation, while in error-

correction schemes for determining the profiles/statistics of

burst-errors and algorithm evaluation. Related work on the

area of vibration modeling includes a variety of approaches

[5], [6], [7], [8]. However, they mainly address this topic at

different dynamic ranges, modeling targets and time-scales.

The main purpose of this work is the measurement, analy-
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Fig. 2. Resultant acceleration magnitude measurements for three different
runners at 12 Km/h.

sis and modeling of human motion acceleration (specifically

walking or running) imposed on mobile devices. This is

achieved by mounting the accelerometer directly on the frame

of the mobile device, aiming at a versatile statistical model

able to describe the inherent diversity of such disturbance envi-

ronments and to predict the short-term acceleration conditions

in an operating device. In Section II, the experimental setup

consisting of the measurement and data acquisition equipment

used is presented and the carried out measurement scenarios

are outlined. In Section III extensive measurements from

several scenarios, the collected dataset analysis and prepro-

cessing steps are presented. Section IV, describes in detail the

modeling approach and the resulting statistical model, while

simulation results showing the proposed model’s performance

are shown in Section V. Finally, in Section VI we present

future goals on improving and extending the model.

II. EXPERIMENTAL SETUP AND MEASUREMENTS

An extensive acceleration time-histories1 dataset was ob-

tained using the experimental setup shown in Figure 1. The

measurement equipment used was a 3-axis high-bandwidth ac-

celerometer mounted on a typical commercial mobile device in

order to avoid undesired measurement-noise caused by friction

and vibrations between the device and the accelerometer. The

measurement system was placed on a running person’s waist

using a commercial mounting accessory provided by mobile

device manufacturers, in order to measure the acceleration

imposed on the device under real conditions. Data acquisition

was performed using three simultaneously accessed, high-

bandwidth 12-bits resolution Analog-to-Digital Conversion

(ADC) channels sampled at 50KHz, providing a sufficient

1Acceleration waveforms over time
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Fig. 3. Resultant acceleration magnitude measurements for Runner 1 at 7,
10, and 12 Km/h.
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Fig. 4. Acceleration measurement data analysis. The database is reformed
containing High and Low acceleration region profiles.

oversampling rate of 5 with respect to the accelerometer’s

bandwidth.

Acceleration data were collected from 7 different runners

(Runner 1 - Runner 7) with different physical characteristics,

walking/running at 8 controlled speeds (5Km/h - 12Km/h) in

a commercial treadmill. Four 2.6 secs-long time-histories per

runner per speed were acquired. This way a large measurement

dataset was created, using the resultant acceleration vector

magnitude from all three axis, since the overall acceleration

profile exerted on the device is that of interest. Measurement
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Fig. 5. HMM-based statistical modeling and signal generation procedure.

results are presented in Figures 2, 3, showing the change in

the signal’s characteristics under several scenarios, such as

running speed, running style and runners’ physical charac-

teristics. From these figures, the inherent periodicity of the

physical phenomenon is also obvious, which confirms the

second necessity described in I.

III. MEASUREMENT ANALYSIS AND PREPROCESSING

The statistical analysis of the measured signals has lead to

the following observations regarding the physical processes’

basic properties. Firstly, the acceleration signal progresses

almost periodically in time through a recurrent coarse pattern,

translating to the time-span between two successive foot-

ground contacts of the runner. Inside each pattern, one high

and one low acceleration region can be identified linked

together by a transition region. Secondly, the pattern’s period

dependence on either speed or runner’s physical characteristics

(among other limb length, fat body distribution, muscle size

and strength, running surface hardness) is rather small and

can be considered as negligible. On the contrary, the high,

low, and transition regions change significantly with respect

to both of the above mentioned factors, whereas their basic

profile changes vastly between different runners but retains a

basic shape with respect to speed changes for the same runner.

Based on the above observations, the acceleration signal’s

diversity makes it very difficult to extract one general model

capable of describing all possible cases. The focus of this

paper with respect to modeling resides on providing a method-

ology for extracting one statistical model per candidate runner

from measurements, capable of describing sufficiently many

basic shape variants of the high, which in fact is the one of

major significance, and low acceleration profiles, while it can

be later extended and generalized in order to include transition

regions and coarse physical characteristics parametrization

capability. Figure 4 depicts the decomposition of the analysis

and preprocessing procedure applied on the acquired dataset

for a specific runner, in order to construct an ensemble of high

and low acceleration profiles, which will be used as training

sequences for the model.

IV. HMM-BASED STATISTICAL MODELING AND SIGNAL

GENERATION PROCEDURE

The proposed Hidden Markov Model (HMM) [9] based

modeling scheme, presented in detail in Figure 5, can be

decomposed in three distinct stages: preprocessing, training

and signal generation stage. Since the steps applied for high



TABLE I
COMPARATIVE STATISTICS OF MEASURED VERSUS SIMULATION

GENERATED ACCELERATION PROFILES FOR HMM-BASED MODELS WITH

3, 5, 7 AND 9 STATES.

Model Comparison mean var skewness kurtosis

Actual Measured Acc. Profile 4.24 1.62 -0.54 2.00

3-State HMM Acc. Output 4.16 1.26 -0.40 2.21

5-State HMM Acc. Output 4.17 1.28 -0.50 2.13

7-State HMM Acc. Output 4.26 1.46 -0.51 1.90

9-State HMM Acc. Output 4.23 1.45 -0.56 2.00

and low acceleration profile modeling are identical, analyzing

these steps for one of the two cases suffices for a comprehen-

sive description of the followed modeling procedure. For this

reason, only the high acceleration profile modeling path will

be discussed here, noting that the same procedure applies also

for the low profile case.

In the preprocessing step, each high profile of the ensemble

created from the measurements analysis presented in Section

III is further subdivided into a rise (High-Rise) and a fall

(High-Fall) region on the basis of the maximum reached

acceleration magnitude point, with the resulting two ensembles

serving as the training sequences for the training stage follow-

ing. Additionally, a data partitioning and statistical analysis

step is applied on each of the training sequence ensembles.

In this step, the signal magnitude range is partitioned based

on the number of HMM states used and the occurrence of

acceleration magnitude fluctuations is statistically investigated.

This procedure ends in an initial coarse estimate of the

HMM parameters defined in the down-left side of Figure

5, leading to improved convergence stability of the HMM

training algorithm to a desired local maximum point. The

training algorithm used was the Baum-Welch, which is an

iterative two-step optimization algorithm [9]. Using the initial

parameter estimates, the algorithm iteratively re-adjusts them

and finally produces the maximum likelihood estimates for

the parameters of each of the High-Rise and High-Fall HMMs

given the observations training sequence ensembles. In the sig-

nal generation stage, the constructed High-Rise and High-Fall

HMMs are used to generate the respective rise and fall regions

of the high acceleration profile. The output waveforms from

the two HMMs are combined and supplied to an appropriate

smoothing filter in order to minimize large high frequency

fluctuations produced by the Gaussian state output probability

density functions. This way a single model-generated high

acceleration profile is created.

The quality of the model-produced profiles depends highly

on the number of states assigned to each of the two HMMs

used. In order for a sufficient number of states to be deter-

mined, the above described modeling scheme was applied

for the cases of 3, 5, 7 and 9 states in both High-Rise

and High-Fall HMMs. The generated output efficiency with

respect to the measured profiles was evaluated in terms of
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Fig. 6. Measured versus model-generated high-acceleration profile for the
case of 10km/h.
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Fig. 7. Measured versus model-generated low-acceleration profile for the
case of 10km/h.

the first four statistical moments of their p.d.f for all four

cases. Based on the comparative results listed in Table I

and considering the trade-off between model complexity and

model signal generation accuracy, the 7-state HMM case was

chosen, since smaller models lead to significant statistical

accuracy degradation and poor signal fluctuations description,

whereas larger models lead to increased complexity without a

corresponding improvement in the two previously mentioned

factors.

V. SIMULATION RESULTS

As previously stated, only the general profiles of low/high

acceleration regions are retained, while several variants of

them appear in different time-snapshots of the signal. This

inherent stochastic nature of both the physical process to

be modeled and of the constructed model itself implies that

a direct one-to-one comparison between a specific low/high
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Fig. 9. Measured versus model-generated low-acceleration profile for the
case of 12km/h.

profile manifestation from measurements and a single model-

output profile is not practical for model efficiency evaluation

purposes. Instead, the mean low/high acceleration profiles

generated by several iterations of the model are compared with

the respective mean measurement-extracted profiles.

In that sense, the proposed modeling procedure analyzed in

Section IV is applied for the randomly chosen case of Runner-

2 and its low/high acceleration profile generation capability is

presented for two indicative speed values. Specifically, Figures

6 and 7 show mean high and low model-generated profiles

versus actual measured mean profiles for the speed of 10km/h.

Comparative results for the case of 12km/h are presented in

Figures 8 and 9 for high and low profiles respectively. The

results show that in all cases the model’s mean output profile

is very close to the actual measured mean profile. Furthermore,

the selected number of states for the underlying HMMs proves

adequate in order for the model to capture the variations in

the signal’s magnitude inside each individual region. As a

consequence, the proposed model is capable of producing a

large number of general-shape-preserving acceleration profile

variants, which in addition statistically sum up to a sufficiently

accurate, with respect to the measured, mean profile.

VI. CONCLUSIONS AND OPEN ISSUES

In this paper, the problem of creating a framework for

modeling the acceleration imposed on mobile MEMS-based

devices from human motion was addressed. Extensive mea-

surements and comparative graphs showing the overall human

motion acceleration dependencies, as well as the HMM-based

modeling and signal generation approach were presented in

detail. Finally, model-generated versus measured acceleration

waveform profiles over time showing the proposed statistical

models signal reconstruction capability, were presented and

analyzed. Future goals on the subject concentrate on extending

the current model so as to describe signal low-to-high transi-

tion regions as well as basic runner cases through appropriate

model-parameter adjustments.
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