
Reprint

A Versatile Instrument for Analyzing and Testing the
Interfaces of Peripheral Devices

P. Savvopoulos, M. Varsamou and Th. Antonakopoulos

The 3rd International Conference on Systems, Signals & Devices
 – SSD 2005

 SOUSSE, TUNISIA, MARCH 2005

Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted or mass reproduced without the
explicit permission of the copyright holder.

A V ERSATILE I NSTRUMENT FOR ANALYZING AND TESTING THE

I NTERFACES OF PERIPHERAL DEVICES

Panayiotis Savvopoulos†, Maria Varsamou‡ and Theodore Antonakopoulos‡

†Research Academic Computer Technology Institute
61 Riga Feraiou Str., 26100 Patras, Greece

Phone: +30-2610-996-489, Fax: +30-2610-996-834
E-mail: psavvop@cti.gr

‡Department of Electrical Engineering
University of Patras, 26500 Rio, Patras, Greece

Phone: +30-2610-996-487, Fax: +30-2610-996-834
E-mail: {varsamou, theodore}@loe.ee.upatras.gr

Abstract— This work presents a flexible development and
testing environment, created for evaluating the performance
and analyzing the characteristics of interfaces used by pe-
ripheral devices. The versatility of the presented instrument
is due to the integration of the Matlab/Simulink tools with a
custom reconfigurable hardware platform using the PCMCIA
bus of conventional laptop computers. The hardware platform
uses reconfigurable circuits, acts as a host adapter of the
peripheral device and transforms the test sequences of the
high level software tool into interface specific bit-streams,
while it simultaneously collects interface-related data for
further processing.

Index Terms— Secure Digital Memory, Performance Ana-
lysis, Consumer Peripheral Devices.

I. Introduction

The evolution in the field of portable consumer
devices, such as laptops, PDAs, MP3 players, digital
cameras etc, along with new memory demanding appli-
cations have resulted to the booming of the peripheral
devices market [1]. A key feature of most new emerging
consumer applications is the need for reliable high rate
data transfers. The peripheral devices portability and
their compatibility with a large variety of consumer
devices, are based on widespread standard interfaces.
Representative examples of such peripheral devices are
met on storage applications [2], [3].

Recently, considerable activity has been observed in
the field of consumer devices development in order
to satisfy the requests for faster, cost-effective and
more reliable peripherals. As a consequence, there is an
increasing demand for a flexible tool that can be used
either for the performance analysis of various existing
peripheral devices or for testing and validating new
devices during development. This paper focuses on such
a versatile instrument that can be used for performance
analysis and testing of a wide range of interfaces for
consumer peripheral devices. This task is accomplished
through an integrated set-up that combines the high-
performance simulation and modeling capabilities of

Matlab/Simulink with a flexible and reconfigurable
hardware platform that is attached to a conventional
laptop computer via the PCMCIA interface.

Section II gives an overview of the development
environment presented in this work. The functional
description of the proposed instrument along with its
architectural characteristics are discussed and analyzed
in Section III. Section IV outlines the Secure Digital in-
terface and demonstrates experimental results collected
during the study of various SD memory cards.

II. The Development Environment

The interaction of a host computer or an embedded
system with its peripheral devices is based on low-
level physical interfaces and a set of protocols, imple-
mented as finite state machines (FSMs). Two kinds of
FSMs are usually defined on such interfaces, one that
controls the device initialization using a handshaking
mechanism, while the other is used for managing the
device during normal operation. The peripheral de-
vices communicate with the host’s application through
a set of commands/responses that are issued by the
host/peripheral on the low-level physical interface in the
form of protocol-specific bit-streams. Depending on the
command that the peripheral device receives, it evolves
its state-machines and responds accordingly.

Performance evaluation, mainly in terms of sustained
data rate, is of great importance not only for existing
peripheral devices but also for new, rapidly emerging
ones. Commercial host adapters allow such devices to
be accessed by a host computing device. However, it is
very difficult, if not impossible, to perform elaborate
tests for performance analysis using these adapters,
since they only allow high-level access to the device
through several, operating system dependent, device I/O
drivers.

This work outlines a complete development and
testing environment that provides low-level control to a
large variety of peripheral devices through their specific

Volume IV
Sensors, Circuits & Instrumentation Systems

Third International Conference on Systems, Signals & Devices
March 21-24, 2005 – Sousse, Tunisia

9973-959-01 -9 / © 2005 / 9885 IEEE

Fig. 1. The Instrument’s Architecture.

interfaces, in contrast to the existing commercial host
adapters. Figure 1 shows the block diagram of the
proposed set-up. In particular, this environment consists
of the high-level modeling tools of Matlab/Simulink
that provides to the user the means to create various test
scenarios and to send sets of commands to the device
using a flexible hardware platform that communicates
with the Matlab environment via the PCMCIA interface.
The reconfigurable hardware platform, that is based
on FPGA circuits, acts as a host adapter that actually
issues the appropriate bit-streams to the device under
test, according to the scenarios implemented in the
Matlab/Simulink level. At the same time, the host
adapter stores the data exchanged over the peripheral
interface and records timing information regarding the
concatenation of different events. All data gathered
from the hardware platform together with the timing
records are transferred to the software tool for further
processing. The collected data are used either for testing
and validation of the peripheral device functionality or
for evaluating its response time and thus determining
its maximum achievable data rate.

Another application of the functionality of the de-
scribed set-up derives from the fact that it can be
utilized as a validation tool during the prototyping of
new devices that have to conform to the specifications
of a given protocol. Various high-level test sequences
can be generated and used to verify the proper operation
of the device’s state-machines and observe its behavior

under erroneous circumstances. As a consequence, this
systematic and methodical debugging procedure leads
to error identification and correction early in the design
process, thus it reduces the ‘time to market’ of the
respective device.

III. Functional Description

Describing in more details the internal structure
of the presented instrument, the development set-up
consists of the Matlab/Simulink tools and the recon-
figurable hardware platform that exchanges data with
the Matlab environment, through the PCMCIA interface
using a custom I/O device driver and custom logic that
extends the PCMCIA’s accessibility.

As it is shown in Figure 1, the FPGA-based hard-
ware platform implements the adaptation control unit
required for interconnecting the peripheral device with
the high-level modeling tool. The basic feature of the
hardware platform’s internal logic is the implementation
of multiple, functionally-related FIFOs for storing and
transmitting data from the Matlab to the peripheral
device and vice versa. These FIFOs facilitate the in-
teraction between the host, as it is emulated in Matlab,
and the actual device. To be more specific, three types
of FIFOs are used in the design, one for storing data
from Matlab scripts and transmitting them properly
to the used peripheral interface, one for storing the
digital waveforms that appear on the interface and

transferring them to the Matlab environment and one
for recording timing information about specific events
such as response time, time between multiple read
or write blocks etc. These FIFOs are combined with
additional control logic, including timers, counters and
FSMs, that allow interaction between them as the test
sequences progress. As a result, testing scenarios of
high complexity, that support bidirectional activities
over the peripheral interface, can be executed.

Various basic functions of the peripheral device in-
terface, such as send command/receive response, read
and write data functions have been implemented as
Matlab scripts. These scripts are used for creating
more complex and sophisticated testing scenarios that
generate a sequence of application specific commands,
but still remaining independent of the characteristics of
a specific physical interface. Additionally, we have to
mention that the Matlab environment remains the mas-
ter unit of the entire system and controls the status of
the peripheral device throughout the whole procedure.

In order to perform a test scenario, various scripts
are initially implemented in the Matlab environment
and when they are executed, they transfer data to the
specific FIFO in the hardware platform. Based on the
control information also received by the Matlab scripts,
the platform logic translates the stored data into sig-
nal waveforms compatible with the peripheral device’s
specifications. These waveforms represent either data
transfers or interface specific commands. During normal
operation, the peripheral device responds accordingly
and evolves its internal FSM by driving the respective
signal waveforms on its outputs. These signals are being
recorded by specific detection logic on the platform’s
FPGA and are transferred to the Matlab workspace,
using another FIFO. Additional internal logic in the
reprogrammable circuit also involves timers and coun-
ters that acquire timing information between various
interface events. This information is finally retrieved
from the timing FIFO and is evaluated at the Matlab
level. Such information is used in order to determine
the device performance and make useful conclusions
about the device functionality and its internal structure.

Following the above methodology, we are able to
compare and benchmark several implementations of a
peripheral interface. The presented instrument is capa-
ble of supporting different kinds of peripheral interfaces
and devices with minimal changes to the adaptation
control unit of the hardware platform logic along with
the physical wiring. A representative example is out-
lined in details in the next section. This example, which
is based on the Secure Digital (SD) interface, measures
and compares the performance of various SD memory
cards from different manufacturers.

IV. The Secure Digital (SD) Memory Case

The above described tool has been used in order to
test and validate devices supporting the SD interface
[3], i.e. SD Memory cards. Several tests have been per-
formed on commercial SD Memory Cards and various
measurements have been carried out. Example figures
and graphs, demonstrating the data rate achieved by
various SD Cards during read and write operations, are
given. The same set-up has been also used for testing
SDIO cards, while it can be easily modified in order to
support other similar interfaces, which are frequently
used in consumer devices.

IV-A. The SD Memory Card Architecture

A SD Memory Card is a flash-based memory card
that is designed specifically to meet the capacity and
performance requirements of the newly emerging audio
and video consumer devices. Its communication with
the host devices is based on a 9-pin interface (Clock,
Command, 4xData and 3xPower lines) designed to
operate in a low voltage range. The inner architecture
of the card includes a set of registers, which contain
several configuration parameters that control the card’s
operation, flash memory modules and a Card Controller
that supervises its internal operation, as well as the
communication between the host and the flash memory.
All communication between the host device and the
card is controlled by the host and is performed over
the SD bus based on command and data bit-streams
which are initiated by a start bit and terminated by a
stop bit. Data transfers to/from the SD Memory Card
are done in blocks, which are always succeeded by
CRC fields. Single and multiple block operations are
allowed. Various data block lengths are supported, with
most common block lengths (sector size) being 512,
1024 and 2048 bytes.

The internal flash memory has various levels of
organization. The read or the write operation takes place
using pages, while the erase operation takes place on
an erase block basis that contains multiple pages [4].
Usually the page size is a multiple of the maximum
data block length supported by the SD Card. Therefore,
during a SD write operation, the Card Controller stores
temporarily in a local buffer so many data blocks (sec-
tors) as needed to complete a page before transferring
the data to the flash memory. Several bi-directional
buffers are used, that provide a built-in ‘pseudo’ cache
memory. Additionally, these buffers make feasible a
virtual continuous write operation, allowing the host
to transmit several data blocks without having to wait
for each one of them to be stored in the flash memory
before sending the next one. When the available buffers
are full, the Card Controller asserts the first Data line

Fig. 2. A ’Read Multiple Block’procedure at the SD memory interface.

Fig. 3. A ’Write Multiple Block’ procedure at the SD memory interface.

line at low level and the host delays the transmission
of the next block. The number of the buffers that the
SD card uses, along with the page size of its flash
memory, have a great impact on the card’s performance.
In practice, most SD Card manufacturers use two bi-
directional buffers. Using the set-up presented in this
work, we gathered several experimental data from var-
ious SD cards, which are thoroughly described in the
following section.

IV-B. Experimental Results

In this section we focus on the use of the presented
instrument for performance analysis of various SD
memory cards, based on sustained data rates. For this
purpose we present several experimental results that
demonstrate the set-up capabilities. It has to be men-
tioned that all the peripheral devices used during this
experiment, follow the SD memory interface [2] with
few variations on their properties during initialization
procedure, that are irrelevant to the method followed.

In particular, using the presented set-up we emulated
the performance of a SD host adapter that is capable
of controling the SD memory interface bus through the
Matlab environment and its running scripts, by sending
any desired command to the peripheral device under
test. It can also produce different clock frequencies and
record every waveform that appears on the physical
interface. The methodology, developed in order to per-
form comparison and performance evaluation regarding
sustained data rates, is analyzed below.

Initially, we developed several test scenarios in the
Matlab environment in the form of scripts that can

read/write a large amount of data from/to the SD
memory cards available. All these scripts are based on
the basic functions of reading/writing sectors from/to
the memory cards and on issuing commands/storing
responses, as it was reported in section III. The same
scripts were used for every SD card with variations only
in their initialization procedure, which is necessary for
being able to support data transfers. Therefore, control
information is used for proper configuration of the
hardware platform in terms of clock frequency, which
depends on the device’s state, desired initialization
properties, and supported block length. This control in-
formation is also used for acquiring timing information
during execution of the data transfer commands. When
a Matlab script runs, the hardware platform transmits
several commands to the memory card. Then, the device
responses and the data exchanged over the interface
along with timing information is stored in the hardware
platform and is transferred to the Matlab environment
when the experiment is finished.

For proper understanding of how the test sequences
are performed in the physical layer and how they are
related to the sustained data rate achieved on the SD
memory interface, we have to define several critical
time intervals that appear in the interface during ex-
ecution of specific data transfer commands. The deter-
mination of these rates is feasible by performing‘Read
Multiple Block’ and ‘Write Multiple Block’ commands.
Figures 2 and 3 present how the‘Read Multiple Block’
and ‘Write Multiple Block’ commands are executed on
the SD memory interface.

According to Figure 2, the exchange of a host’s‘Read

Fig. 4. An example of a‘Read Multiple Block’command with SD Card supply current measurement.

Fig. 5. An example of a‘Write Multiple Block’ command with SD Card supply current measurement.

Multiple Block’ command and the card’s response is
followed by the transmission of the first data block
after a card dependent time (t2), which is related to
the card’s internal operations for activating the flash
array and starting up the read data process. There is
an additional guard time (t3) between the transmission
of successive data blocks. This process continues until
a ‘Stop Transmission’command is issued by the host.
The time intervalt3 is card dependent and for specific
SD clock frequency and block length, this parameter
determines the sustained data rate that can be achieved
during a ‘Read Multiple Block’operation. In the fol-
lowing experimental results, data blocks of 512 bytes
have been used.

In the case of a‘Write Multiple Block’ command,
that is shown in Figure 3, we observe that the host starts
transmitting data blocks after receiving the SD card’s
response. This procedure is terminated when the host

sends a‘Stop Transmission’command. Since the SD
card uses internal buffers for temporary storage of the
received data blocks, this operation continues as long as
there is available temporary memory. When all internal
buffers are full, the card forces the DAT0 line to low
level and the host delays the transmission of the next
block. When the DAT0 line is released, the host begins
the transmission of the next data block. According to
Figure 3, the time internaltw is card dependent and
is related to the size and number of the buffers used,
to the flash technology used, etc. This time determines
the sustained data rate rate that can be achieved during
a ‘Write Multiple Block’ operation. On the other hand,
the timet3 is host dependent and usually, it is equal to
a few clock cycles.

Figures 4 and 5 present typical examples of physical
interface waveforms of a SD memory card during the
execution of‘Read Multiple Block’and ‘Write Multi-

Fig. 6. Sustained Read Data Rate for various SD memory cards
achieved with‘Read Multiple Block’command.

ple Block’ commands respectively. These figures also
present how the card’s supply current is related to the
card’s status and to its internal operations. The supply
current increases when the internal flash memory is
accessed.

Based on experimental measurements on various SD
cards, their sustained data rate has been determined.
Figures 6 and 7 present the data rate that can be
achieved in various SD cards during read and write
data operations. It has to be mentioned that all these
cards satisfy the same peripheral interface but they
exhibit different performance since they use different
flash technology and/or different internal organization.

V. Conclusions

In this paper we presented a flexible instrument that
is able to perform complicated tests on various widely
used peripheral devices, in order to measure and ana-
lyze their performance. Its versatility and effectiveness
are based on the integration of the Matlab simulation
environment with a reconfigurable hardware platform,
where the ‘device under test’ is connected. The pro-
posed set-up can be utilized for evaluating, resolving
and comparing the performance of existing peripheral
devices. Since it provides the means for generating any
type of test sequences and scenarios, it can also be used
for the development of new peripheral interfaces.

Fig. 7. Sustained Write Data Rate for various SD memory cards
achieved with‘Write Multiple Block’ command.

Acknowledgments

This work was financially supported by the IBM Zurich
Research Laboratory.

References

[1] Richard M. Sherwin, ”Memory on the Move”,IEEE
Spectrum,pp. 55-59, May 2001.

[2] The MultiMedia Card, System Specification, Version
3.31, March 2003.

[3] SD Memory Card Specifications, Part 1, PHYSICAL
LAYER SPECIFICATION, Version 1.0, March 2000.

[4] ATMEL Corp., AN-4:Using Atmel’s DataFlash Applica-
tion Note, Rev. 0842D, November 2002.

Panayiotis Savvopoulosreceived his Diploma in electrical engineer-
ing and computer technology from the University of Patras, Greece
in 2001. Since 2001 he is a graduate student at the Department
of Electrical Engineering of the University of Patras, Greece. His
research interests are in the area of digital communications and
specially on iterative satellite receivers. Mr Savvopoulos participates
in various R&D projects of European industries.

Maria Varsamou is a graduate student at the Department of Electrical
Engineering of the University of Patras, Greece. Her research interests
are in the area of digital communications,with emphasis on error
control coding. Mrs Varsamou participates in various R&D projects
of European industries.

Theodore Antonakopoulosis an Associate Professor at the Electrical
Engineering Department of the University of Patras, Greece.His
research interests are in the area of digital communications with
emphasis on performance analysis, efficient hardware implementation
and rapid prototyping. He has more than 100 publications in the
above areas and is actively participating in several R&D projects of
European industries.

